△ABC中,a,b,c分別為角A,B,C的對邊,S表示△ABC的面積,若acosB+bcosA=csinC,S△ABC=數(shù)學公式(b2+c2-a2),則角B等于


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
B
分析:先利用正弦定理把題設(shè)等式中的邊轉(zhuǎn)化成角的正弦,化簡整理求得sinC的值,進而求得C,然后利用三角形面積公式求得S的表達式,進而求得a=b,推斷出三角形為等腰直角三角形,進而求得∠B.
解答:由正弦定理可知acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(A+B)=2RsinC=2RsinC•sinC
∴sinC=1,C=90°.
∴S=ab=(b2+c2-a2),
解得a=b,因此∠B=45°.
故選B.
點評:本題主要考查了正弦定理的應(yīng)用.作為解三角形常用的定理,我們應(yīng)熟練記憶和掌握正弦定理公式及其變形公式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別是A、B、C的對邊.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角為
π
3
.求角B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c三邊成等差數(shù)列,求證:B≤60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A:B:C=4:2:1,證明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,a,b,c分別為角A,B,C的對邊.若a(a+b)=c2-b2,則角C為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•靜安區(qū)一模)在ρABC中,a、b、c 分別為∠A、∠B、∠C的對邊,∠A=60°,b=1,c=4,則
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步練習冊答案