3.已知函數(shù)f(x)=x2cos$\frac{πx}{2}$,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項(xiàng)之和S100=10200.

分析 f(x)=x2cos$\frac{πx}{2}$,可得an=f(n)+f(n+1)=${n}^{2}cos\frac{nπ}{2}$+$(n+1)^{2}cos\frac{(n+1)π}{2}$,分別求出a4n-3,a4n-2,a4n-1,a4n,再利用“分組求和”方法即可得出.

解答 解:∵f(x)=x2cos$\frac{πx}{2}$,
∴an=f(n)+f(n+1)=${n}^{2}cos\frac{nπ}{2}$+$(n+1)^{2}cos\frac{(n+1)π}{2}$,
a4n-3=$(4n-3)^{2}cos\frac{4n-3}{2}π$+(4n-2)2$cos\frac{4n-2}{2}π$=-(4n-2)2
同理可得:a4n-2=-(4n-2)2,a4n-1=(4n)2,a4n=(4n)2
∴a4n-3+a4n-2+a4n-1+a4n=-2(4n-2)2+2(4n)2=8(4n-1).
∴數(shù)列{an}的前100項(xiàng)之和S100=8×(3+7+…+99)=10200.
故答案為:10200.

點(diǎn)評(píng) 本題考查了數(shù)列“分組求和”方法、分類討論方法、三角函數(shù)的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若復(fù)數(shù)z滿足z(2-i)=10+5i(i為虛數(shù)單位),則|z|=(  )
A.25B.10C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC 中,∠C=$\frac{2π}{3}$,a=6.
(Ⅰ)若c=14,求sinA的值;
(Ⅱ)若△ABC的面積為3$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{3}$,$\frac{5π}{3}$]B.[-2π,-$\frac{π}{3}$]C.[$\frac{5π}{3}$,2π]D.[-2π,-$\frac{π}{3}$]和[$\frac{5π}{3}$,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為120°,那么$|{\overrightarrow a+2\overrightarrow b}|$=( 。
A.1B.$\sqrt{3}$C.$2+\sqrt{3}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=2、|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}•\overrightarrow{OB}$=0,點(diǎn)P滿足$\overrightarrow{OP}=\frac{m}{{\sqrt{2{m^2}+2{n^2}}}}\overrightarrow{OA}+\frac{{\sqrt{2}n}}{{\sqrt{{m^2}+{n^2}}}}\overrightarrow{OB}$,其中m≥0,n≥0,則點(diǎn)P所表示的軌跡長(zhǎng)度為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{π}{2}$D.$\frac{{\sqrt{2}π}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.對(duì)于同一平面的單位向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,若$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$(\overrightarrow a-\overrightarrow b)•(\overrightarrow a-2\overrightarrow c)$的最大值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.2016年1月1日,我國(guó)實(shí)施“全面二孩”政策,中國(guó)社會(huì)科學(xué)院在某地(已婚男性約15000人)隨機(jī)抽取了150名已婚男性,其中愿意生育二孩的有100名,經(jīng)統(tǒng)計(jì),該100名男性的年齡情況對(duì)應(yīng)的頻率分布直方圖如下;
(1)求這100名已婚男性的年齡平均值$\overline{x}$和樣本方差s2(同組數(shù)據(jù)用區(qū)間的中點(diǎn)值代替,結(jié)果精確到個(gè)位);
(2)(Ⅰ)試估計(jì)該地愿意生育二孩的已婚男性人數(shù);
     (Ⅱ)由直方圖可以認(rèn)為,愿意生育二孩的已婚男性的年齡ξ服從正態(tài)分布N(μ,δ2),其中μ近似樣本的平均值$\overline{x}$,δ2近似為樣本的方差s2,試問(wèn):該地愿意生育二孩且處于較佳的生育年齡ξ(ξ∈(26,31))的總?cè)藬?shù)約為多少?(結(jié)果精確到個(gè)位)
附:若ξ~N(μ,δ2),則P(μ-δ<ξ<μ+δ)=0.6826,P(μ-2δ<ξ<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的左、右焦點(diǎn)分別為F1、F2,過(guò)F2的直線與該雙曲線的右支交于A、B兩點(diǎn),若△ABF1的周長(zhǎng)為30,則點(diǎn)F1與以AB為直徑的圓的位置關(guān)系為(  )
A.在圓外B.在圓上C.在圓內(nèi)D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案