分析 令t=x+1(t≠0),則x=t-1,代入原方程轉化為關于t的方程,求得$t+\frac{1}{t}$的值,進一步求出t,則x的值可求.
解答 解:令t=x+1(t≠0),
則x=t-1,
則方程x2+$\frac{{x}^{2}}{(x+1)^{2}}$=3化為$(t-1)^{2}+\frac{(t-1)^{2}}{{t}^{2}}=3$,
即${t}^{2}-2t+1+\frac{{t}^{2}-2t+1}{{t}^{2}}=3$,
∴${t}^{2}+\frac{1}{{t}^{2}}+2-2(t+\frac{1}{t})-3=0$,
∴$(t+\frac{1}{t})^{2}-2(t+\frac{1}{t})-3=0$,解得$t+\frac{1}{t}=-1$或$t+\frac{1}{t}=3$.
若$t+\frac{1}{t}=-1$,則t2+t+1=0,此方程無解;
若$t+\frac{1}{t}=3$,則t2-3t+1=0,∴t=$\frac{3±\sqrt{5}}{2}$,
則x=t-1=$\frac{1±\sqrt{5}}{2}$.
點評 本題考查分式方程的解法,訓練了換元法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-1) | C. | (-∞,1) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com