若二項(xiàng)式(x+
a
x
7的展開式中
1
x
的系數(shù)與
1
x3
的系數(shù)之比是35:21,則a=( 。
A、1B、2C、-1D、-2
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:二項(xiàng)式定理
分析:根據(jù)二項(xiàng)式(x+
a
x
7展開式的通項(xiàng)公式,求出
1
x
1
x3
的系數(shù),利用它們的比求出a的值.
解答: 解:∵二項(xiàng)式(x+
a
x
7的展開式的通項(xiàng)公式為
Tr+1=
C
r
7
•x7-r(
a
x
)
r

=ar
C
r
7
•x7-2r,
令7-2r=-1,解得r=4,
1
x
的系數(shù)為a4
C
4
7
;
令7-2r=-3,解得r=5,
1
x3
的系數(shù)為a5
C
5
7
,
a4
•C
4
7
a5
•C
5
7
=
35
21

∴a=1.
故選:A.
點(diǎn)評(píng):本題考查了二項(xiàng)式展開式通項(xiàng)公式的靈活應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-2sin(x+
π
8
)[sin(x+
π
8
)-cos(x+
π
8
)]
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[-
π
2
,
π
12
],求函數(shù)f(x+
π
8
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x≥0
y≥0
x+y≤2
,則z=4x+y的取值范圍是( 。
A、[0,2]
B、[0,8]
C、[2,8]
D、[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A、225B、75
C、275D、300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0)),(a>0,b>0,O為坐標(biāo)原點(diǎn)),若A,B,C三點(diǎn)共線,則a與b的關(guān)系式為
 
1
a
+
2
b
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某市今年1月份前30天空氣質(zhì)量指數(shù)(AQI)的趨勢(shì)圖.

(1)根據(jù)該圖數(shù)據(jù)在答題卷中完成頻率分布表,并在圖3中作出這些數(shù)據(jù)的頻率分布直方圖;
 分組頻數(shù) 頻率 
[20,40)  
[40,60)  
[60,80)  
[80,100)  
[100,120)  
[120,140)  
[140,160)  
[160,180)  
[180.200]  
 合計(jì) 30 1
(2)當(dāng)空氣質(zhì)量指數(shù)(AQI)小于100時(shí),表示空氣質(zhì)量?jī)?yōu)良.某人隨機(jī)選擇當(dāng)月1日至10日中的某一天到達(dá)該市,并停留2天,設(shè)ξ是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求ξ的數(shù)學(xué)期望.

(圖中縱坐標(biāo)1/300即
1
300
,以此類推)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)F(x)=x2-2lnx-ax(a≠0),其導(dǎo)函數(shù)F′(x),若函數(shù)F(x)的圖象交x軸于C(x1,0),D(x2,0)兩點(diǎn)且線段CD的中點(diǎn)N(x0,0),問(wèn)x0是否為F′(x)=0的根,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,若a=3,∠B=2∠A,cosA=
6
3
,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以極點(diǎn)為原點(diǎn),以極軸為x軸正半軸建立平面直角坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=10,曲線C′的參數(shù)方程為
x=3+5cosα
y=-4+5sinα
(α為參數(shù)).
(I)判斷兩曲線的位置關(guān)系;
(Ⅱ)若直線l與曲線C和C′均相切,求直線l的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案