分析 求出原函數(shù)的對稱軸,由-x2+4x+1=-4,可得x=-1或5,要使函數(shù)f(x)=-x2+4x+1,其中x∈[-1,t],函數(shù)的值域為[-4,5],即可求出實數(shù)t的取值范圍.
解答 解:函數(shù)f(x)=-x2+4x+1=-(x-2)2+5,對稱軸方程為x=2,在[-1,2]上為增函數(shù),[2,t]上為減函數(shù)
由-x2+4x+1=-4,可得x=-1或5,
∴要使函數(shù)f(x)=-x2+4x+1,其中x∈[-1,t],函數(shù)的值域為[-4,5],
∴實數(shù)t的取值范圍是[2,5].
故答案為:[2,5].
點評 本題考查了函數(shù)的定義域及其求法,考查了二次函數(shù)的單調(diào)性,是中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | $[\frac{{\sqrt{2}}}{2},+∞)$ | C. | $[{\frac{{\sqrt{2}}}{4},+∞})$ | D. | $[\sqrt{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 102 | B. | $\frac{865}{8}$ | C. | $\frac{817}{8}$ | D. | 108 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,5] | B. | (-1,5] | C. | [-1,1] | D. | [1,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2015 | B. | -2016 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com