18.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N+
(Ⅰ)計算a2,a3
(Ⅱ)求數(shù)列{an}通項公式an

分析 (I)由a1=1,an+1=2an+1(n∈N+),令n=1,2即可得出.
(II)由an+1=2an+1,變形為:an+1+1=2(an+1),利用等比數(shù)列的通項公式即可得出.

解答 解:(I)∵a1=1,an+1=2an+1(n∈N+),
∴a2=2a1+1=3,a3=2a2+1=7.
(II)由an+1=2an+1,變形為:an+1+1=2(an+1),
∴數(shù)列{an+1}是等比數(shù)列,公比為2,首項為2.
∴an+1=2n,解得an=2n-1.

點評 本題考查了等比數(shù)列的通項公式及其性質(zhì)、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:若x>y,則x2>y2;命題q:“a=0”是“f(x)=$\frac{1}{x}$+a為奇函數(shù)”的充分必要條件.在命題①p∧q;②p∨q;③p∧¬q;④¬p∨q中,真命題是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖(1)所示,直觀圖如圖(2)所示.
(1)求它的體積;
(2)證明:A1C⊥平面AB1C1;
(3)若D是棱CC1的中點,在棱AB上取中點E,判斷DE是否平行于平面AB1C1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個盒子里裝有6張卡片,上面分別寫著如下6個定義域為R的函數(shù):f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.現(xiàn)從盒子中逐一抽取卡片,且每次取出后不放回,若取到一張記有偶函數(shù)的卡片,則停止抽取,否則繼續(xù)進(jìn)行,則抽取次數(shù)ξ的數(shù)學(xué)期望為(  )
A.$\frac{7}{4}$B.$\frac{77}{20}$C.$\frac{3}{4}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}滿足a1=1,3(an-an+1)=an•an+1,n∈N+,則數(shù)列{an}的通項公式是an=$\frac{3}{n+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=-x2+4x+1,其中x∈[-1,t],函數(shù)的值域為[-4,5],則t的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用導(dǎo)數(shù)定義求函數(shù)y=f(x)=$\frac{2}{x}$+x在下列各點的導(dǎo)數(shù).
(1)x=1;
(2)x=-2;
(3)x=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右焦點分別為F1,F(xiàn)2,過左焦點F1(-2,0)作x軸的垂線交橢圓于P,Q兩點,PF2與y軸交于E(0,$\frac{3}{2}$),A,B是橢圓上位于PQ兩側(cè)的動點.
(Ⅰ)求橢圓的離心率e和標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)∠APQ=∠BPQ時,直線AB的斜率KAB是否為定值,若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.當(dāng)直線(sin2α)x+(2cos2α)y-1=0($\frac{π}{2}$<α<π)與兩坐標(biāo)軸圍成的三角形面積最小時,α等于(  )
A.$\frac{π}{4}$B.$\frac{5π}{6}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案