分析 (1)利用誘導公式化簡已知,兩邊平方后,結合sin2α+cos2α=1,即可得解.
(2)由$\frac{π}{2}<α<π$,可求sinα>0,cosα<0,進而可求sinα-cosα>0,結合(1)結論即可計算得解.
(3)由誘導公式,立方差公式即可化簡求值得解.
解答 (本題滿分14分)
解:(1)因為$sin({π-α})-cos({π+α})=sinα+cosα=\frac{{\sqrt{2}}}{3}$,…(2分)
兩邊平方可得:${sin^2}α+2sinα•cosα+{cos^2}α=\frac{2}{9}$.
又因為sin2α+cos2α=1,
所以$sinα•cosα=-\frac{7}{18}$.…(6分)
(2)由于$\frac{π}{2}<α<π$,那么sinα>0,cosα<0,
故sinα-cosα>0,
所以$sinα-cosα=\sqrt{{{({sina-cosα})}^2}}=\sqrt{1-2sinα•cosα}=\frac{4}{3}$.…(10分)
(3)由誘導公式得:${sin^3}({\frac{π}{2}-α})-{cos^3}({\frac{π}{2}+α})={cos^3}α+{sin^3}α$
=(cosα+sinα)(cos2α-cosα•sinα+cos2α)=$\frac{{\sqrt{2}}}{3}×({1+\frac{7}{18}})=\frac{{25\sqrt{2}}}{54}$.…(14分)
點評 本題主要考查了誘導公式,同角三角函數(shù)基本關系式,立方差公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 27 | B. | 81 | C. | 243 | D. | 729 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{1}{3},1)$ | B. | $(-∞,\frac{1}{3})∪(1,+∞)$ | C. | $(-\frac{1}{3},\frac{1}{3})$ | D. | $(-∞,-\frac{1}{3})∪(\frac{1}{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com