分析 先根據(jù)不等式的基本性質(zhì)求出(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)的最小值為8,再根據(jù)不等式恒成立的問題求出m的范圍,問題得以解決.
解答 解:∵x>0,y>0,
∴(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)=2+2+$\frac{4y}{x}$+$\frac{x}{y}$≥4+2$\sqrt{\frac{4y}{x}•\frac{x}{y}}$=8,當(dāng)且僅當(dāng)x=2y時取等號,
∴(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)的最小值為8,
∵對x>0,y>0,有(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)≥m恒成立,
∴m≤8,
∴m的最大值為8,
故答案為:8.
點評 本題考查了不等式的基本性質(zhì)和不等式恒成立的問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | ? | 54 |
A. | 39萬元 | B. | 38萬元 | C. | 38.5萬元 | D. | 39.373萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{25}$ | B. | $\frac{2}{19}$ | C. | $\frac{2}{13}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com