分析 直接由二次根式的性質(zhì)得到函數(shù)的定義域,而函數(shù)f(x)=x+4$\sqrt{x}$-1=($\sqrt{x}$+2)2-5,即可求出函數(shù)的值域.
解答 解:函數(shù)f(x)=x+4$\sqrt{x}$-1,則函數(shù)的定義域是[0,+∞),
f(x)=x+4$\sqrt{x}$-1=($\sqrt{x}$+2)2-5,
∴f(x)在[0,+∞)單調(diào)遞增,
∴f(x)≥f(0)=-1,
∴函數(shù)的值域是[-1,+∞),
故答案為:[0,+∞),[-1,+∞).
點評 本題考查了函數(shù)的定義域和值域的求法,關(guān)鍵是掌握二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{7}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ρ=1+ρcosθ | B. | ρ=1+cosθ | C. | ρ=1+2ρcos θ | D. | ρ=1+2cos θ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com