11.函數(shù)f(x)=x+4$\sqrt{x}$-1,則函數(shù)的定義域是[0,+∞);函數(shù)的值域是[-1,+∞).

分析 直接由二次根式的性質(zhì)得到函數(shù)的定義域,而函數(shù)f(x)=x+4$\sqrt{x}$-1=($\sqrt{x}$+2)2-5,即可求出函數(shù)的值域.

解答 解:函數(shù)f(x)=x+4$\sqrt{x}$-1,則函數(shù)的定義域是[0,+∞),
f(x)=x+4$\sqrt{x}$-1=($\sqrt{x}$+2)2-5,
∴f(x)在[0,+∞)單調(diào)遞增,
∴f(x)≥f(0)=-1,
∴函數(shù)的值域是[-1,+∞),
故答案為:[0,+∞),[-1,+∞).

點評 本題考查了函數(shù)的定義域和值域的求法,關(guān)鍵是掌握二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\frac{ln|x|}{2x}$的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,將△ABD折起到△PBD的位置,若三棱錐P-BCD的外接球的體積為$\frac{7\sqrt{7}π}{6}$,則二面角P-BD-C的正弦值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=(2-a)x+a-2(1+lnx)
(1)當(dāng)a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)若對任意x∈(0,$\frac{1}{2}$),f(x)>0恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合M={x|x2+3x=0},N={x|x2+2x-3=0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓E:x2+y2=1,點C(-1,0),D(0,-1),P(2,0),過P作直線l與圓E相交于A,B兩點.
(1)若<$\overrightarrow{OB}$,$\overrightarrow{OP}$>=2<$\overrightarrow{OA}$,$\overrightarrow{OP}$>,求直線l的斜率;
(2)記線段AB的中點為M,求|$\overrightarrow{MC}$+$\overrightarrow{MD}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=(2-a)lnx+$\frac{2}{x}$+ax.
(1)當(dāng)a=0時,求函數(shù)f(x)的極值;
(2)當(dāng)a<0時,試求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則原函數(shù)y=f(x)的極大值點的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直角坐標(biāo)方程y2-3x2-4x-1=0等價的極坐標(biāo)方程是(  )
A.ρ=1+ρcosθB.ρ=1+cosθC.ρ=1+2ρcos θD.ρ=1+2cos θ

查看答案和解析>>

同步練習(xí)冊答案