分析 求出函數f(x)=2sin$\frac{1}{2}x$,由此能求出不等式f(x)>0的解集.
解答 解:∵函數f(x)=$\sqrt{3}$sin($\frac{1}{2}$x+$\frac{π}{6}$)-2cos2($\frac{1}{4}$x+$\frac{π}{12}$)
=$\sqrt{3}$sin($\frac{1}{2}x+\frac{π}{6}$)-cos($\frac{1}{2}x+\frac{π}{6}$)-1
=2sin$\frac{1}{2}x$-1,
∴不等式f(x)>0,即2sin$\frac{1}{2}x$-1>0滿足:
2kπ+$\frac{π}{6}$$<\frac{1}{2}x$<$\frac{5π}{6}$+2kπ,k∈Z,
∴4kπ+$\frac{π}{3}$<x<$\frac{5π}{3}$+4kπ,k∈Z,
∴不等式f(x)>0的解集是{x|4kπ+$\frac{π}{3}$<x<$\frac{5π}{3}$+4kπ,k∈Z}.
故答案為:{x|4kπ+$\frac{π}{3}$<x<$\frac{5π}{3}$+4kπ,k∈Z}.
點評 本題考查三角函數不等式的解集,是中檔題,解題時要認真審題,注意三角函數恒等式的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=sin2x-cos2x | B. | y=cos2x-sin2x | C. | y=cos2x+sin2x | D. | y=cosxsinx |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com