【題目】現(xiàn)安排6名同學(xué)前往4所學(xué)校進(jìn)行演講,要求甲、乙兩同學(xué)不能前往同一個(gè)學(xué)校,每個(gè)學(xué)校都有人前往,每人只前往一個(gè)學(xué)校,則滿足上述要求的不同安排方案數(shù)為________.(用數(shù)字作答)
【答案】1320
【解析】
分4所學(xué)校人數(shù)是3,1,1,1和2,2,1,1兩種情況討論,采用間接法來處理.
安排6名同學(xué)前往4所學(xué)校進(jìn)行演講,每個(gè)學(xué)校都有人前往,每人只前往一個(gè)學(xué)校,有兩種情況:
若4所學(xué)校的人數(shù)是3,1,1,1時(shí),則有種不同安排方式,當(dāng)甲、乙前往同一學(xué)校時(shí),
有種不同的安排方式;
若4所學(xué)校的人數(shù)是2,2,1,1時(shí),則有種不同安排方式,當(dāng)甲、乙前往同一學(xué)校時(shí),
有種不同的安排方式;
故甲、乙兩同學(xué)不能前往同一個(gè)學(xué)校,每個(gè)學(xué)校都有人前往,每人只前往一個(gè)學(xué)校共有
種.
故答案為:1320
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓的左、右焦點(diǎn),點(diǎn)是該橢圓上一點(diǎn),若當(dāng)時(shí),面積達(dá)到最大,最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點(diǎn),是否存在過左焦點(diǎn)的直線,與橢圓交于兩點(diǎn),使得的面積為?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少兒游泳隊(duì)需對隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測試.已知隊(duì)員的測試分?jǐn)?shù)與仰臥起坐
個(gè)數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊(duì)員最多進(jìn)行三組測試,每組限時(shí)1分鐘,當(dāng)一組測完,測試成績達(dá)到60分或以上時(shí),就以此組測試成績作為該隊(duì)員的成績,無需再進(jìn)行后續(xù)的測試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測試的頻率分布直方圖如下:
(1)計(jì)算值;
(2)以此樣本的頻率作為概率,求
①在本次達(dá)標(biāo)測試中,“喵兒”得分等于的概率;
②“喵兒”在本次達(dá)標(biāo)測試中可能得分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下面類比推理:
①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;
②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;
④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.
其中結(jié)論正確的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線的焦點(diǎn)為F,點(diǎn)P是半橢圓上的一點(diǎn),過點(diǎn)P作拋物線C的兩條切線,切點(diǎn)分別為A、B,且直線PA、PB分別交y軸于點(diǎn)M、N.
(1)證明:;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,.
(1)證明:;
(2)設(shè)點(diǎn)M在線段PC上,且,若的面積為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上.
(1)若拋物線C經(jīng)過點(diǎn),求C的標(biāo)準(zhǔn)方程;
(2)拋物線C的焦點(diǎn)(m是大于零的常數(shù)),若過點(diǎn)F的直線與C交于 兩點(diǎn),,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,命題:對,不等式恒成立;命題,使得成立.
(1)若為真命題,求的取值范圍;
(2)當(dāng)時(shí),若假,為真,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com