16.計(jì)算下列各式中x的值.
(1)log381=x.
(2)log8x=2.
(3)logx2=8.

分析 根據(jù)對(duì)數(shù)的定義列出方程計(jì)算.

解答 解:(1)∵log381=x,
∴3x=81,
∴x=4.
(2)∵log8x=2,
∴x=82=64.
(3)∵logx2=8,
∴x8=2,
∵x>0,且x≠1,
∴x=$\root{8}{2}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直三棱柱ABC-A1B1C1中,AB=BC,AC=AA1=2$\sqrt{2}$,E為A1C上一點(diǎn),且A1C=4EC,F(xiàn)為AC的中點(diǎn).
(1)證明:A1C⊥平面BEF;
(2)若平面A1BC⊥平面A1B1BA,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.證明:$\sum_{i=1}^{n}$r${C}_{n}^{r}$=n2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足$\frac{cosB}{cosC}$+$\frac{2a}{c}+\frac{c}$=0,則角C的大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校某年級(jí)全體1200名學(xué)生中抽取80名學(xué)生做視力檢查.現(xiàn)將1200名學(xué)生從1到1200進(jìn)行編號(hào),在1~15中隨機(jī)抽取一個(gè)數(shù),如果抽到的是6,則從46~60這15個(gè)數(shù)中應(yīng)抽取的數(shù)是( 。
A.47B.48C.51D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\overrightarrow{i}$,$\overrightarrow{j}$是平面上不共線的兩個(gè)向量,已知$\overrightarrow{a}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow$=-$\overrightarrow{i}$+5$\overrightarrow{j}$,則$\overrightarrow{a}$,$\overrightarrow$的坐標(biāo)為( 。
A.(2,3),(1,5)B.(2,-3),(1,-5)C.(-2,3),(1,-5)D.(2,-3),(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{a}$、$\overrightarrow$是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量$\overrightarrow{c}$滿足($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,則|$\overrightarrow{c}$|的最大值是( 。
A.1B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow{a}$=(2,-6),$\overrightarrow$=(-4,3),求:
(1)|$\overrightarrow{a}$|,|$\overrightarrow$|;
(2)$\overrightarrow{a}$•$\overrightarrow$;
(3)$\overrightarrow{a}$•(2$\overrightarrow{a}$+$\overrightarrow$);
(4)(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的最小正周期為π,且圖象上有一個(gè)最低點(diǎn)為M($\frac{2π}{3}$,-3).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}$)=$\frac{9}{5}$,0<α<$\frac{π}{2}$,求sinα.

查看答案和解析>>

同步練習(xí)冊(cè)答案