1.$\overrightarrow{i}$,$\overrightarrow{j}$是平面上不共線的兩個(gè)向量,已知$\overrightarrow{a}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow$=-$\overrightarrow{i}$+5$\overrightarrow{j}$,則$\overrightarrow{a}$,$\overrightarrow$的坐標(biāo)為(  )
A.(2,3),(1,5)B.(2,-3),(1,-5)C.(-2,3),(1,-5)D.(2,-3),(-1,5)

分析 直接根據(jù)向量坐標(biāo)的定義即可求出.

解答 解:$\overrightarrow{i}$,$\overrightarrow{j}$是平面上不共線的兩個(gè)向量,已知$\overrightarrow{a}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow$=-$\overrightarrow{i}$+5$\overrightarrow{j}$,則$\overrightarrow{a}$,$\overrightarrow$的坐標(biāo)為(2,-3),(-1,5),
故選:D.

點(diǎn)評 本題考查了向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+ax+b,g(x)=2x2+2,存在實(shí)數(shù)b,使得對任意x∈R,有-g(x)≤f(x)≤g(x).
(Ⅰ)求a的取值范圍;
(Ⅱ)若方程f(x)-x=0有兩個(gè)實(shí)數(shù)根x1,x2,求|x1-x2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖為一個(gè)圓柱中挖去兩個(gè)完全相同的圓錐而形成的幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{1}{3}$πB.$\frac{2}{3}$πC.$\frac{4}{3}$πD.$\frac{5}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)y=$\sqrt{2}$sin(x+$\frac{π}{4}$).
(1)求f(x)最小正周期;
(2)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值;
(3)求f(x)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算下列各式中x的值.
(1)log381=x.
(2)log8x=2.
(3)logx2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a>0且a≠1,若函數(shù)f(x)=ax-1+2的反函數(shù)的圖象經(jīng)過定點(diǎn)P,則點(diǎn)P的坐標(biāo)是(3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.試寫出(x-$\frac{1}{x}$)7的展開式中系數(shù)最大的項(xiàng)$\frac{35}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={x|y=lg(a-x)},B={x|1<x<2},且(∁RB)∪A=R,則實(shí)數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“sinα=0”是“cosα=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案