8.已知命題p:若x>y,則x2>y2;命題q:“a=0”是“f(x)=$\frac{1}{x}$+a為奇函數(shù)”的充分必要條件.在命題①p∧q;②p∨q;③p∧¬q;④¬p∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

分析 根據(jù)條件先判斷命題p,q的真假性,由復(fù)合命題的真假關(guān)系進(jìn)行判斷.

解答 解:命題p:若x>y,則x2>y2;為假命題,當(dāng)x=1,y=-1時(shí),不等式就不成立,
命題q:若a=0則f(x)=$\frac{1}{x}$為奇函數(shù),即充分性成立,若f(x)=$\frac{1}{x}$+a為奇函數(shù),則f(-x)=-f(x),即-$\frac{1}{x}$-a=-($\frac{1}{x}$+a)=-$\frac{1}{x}$-a,即a=-a,則a=0,即必要性成立,即:“a=0”是“f(x)=$\frac{1}{x}$+a為奇函數(shù)”的充分必要條件,則命題q是真命題,
則①p∧q為假命題.;②p∨q為真命題.;③p∧¬q為假命題.;④¬p∨q中為真命題.
故真命題的是②④,
故選:D

點(diǎn)評(píng) 本題主要考查命題的真假判斷以及復(fù)合命題真假關(guān)系,根據(jù)條件判斷命題p,q的真假是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-1,x≤-1}\\{x,-1<x<1}\\{1,x≥1}\end{array}\right.$,函數(shù)g(x)=ax2-x+1,若函數(shù)y=f(x)-g(x)恰好有2個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若x3+5x2-7x-3=(x-4)3+a(x-4)2+b(x-4)+c,則(a,b,c)=(17,81,113).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商場(chǎng)五一進(jìn)行抽獎(jiǎng)促銷活動(dòng),當(dāng)日在該商場(chǎng)消費(fèi)的顧客即可參加抽獎(jiǎng)活動(dòng),抽獎(jiǎng)情況如下:消費(fèi)金額每滿500元,可獲得一次抽獎(jiǎng)機(jī)會(huì),即設(shè)消費(fèi)金額x元,x∈[500,1000)可抽獎(jiǎng)1次,x∈[1000,1500)可抽獎(jiǎng)2次,x∈[1500,2000)可抽獎(jiǎng)3次,以此類推.
抽獎(jiǎng)箱中有9個(gè)大小形狀完全相同的小球,其中4個(gè)紅球、3個(gè)白球、2個(gè)黑球(每次只能抽取一個(gè),且不放回抽。
第一種抽獎(jiǎng)方式:若抽得紅球,獲獎(jiǎng)金10元;若抽得白球,獲獎(jiǎng)金20元;若抽得黑球,獲獎(jiǎng)金40元.
第二種抽獎(jiǎng)方式:抽到紅球,獎(jiǎng)金0元;抽到白球,獲得獎(jiǎng)金50元;若抽到黑球,獲獎(jiǎng)金100元.
(1)若某顧客在該商場(chǎng)當(dāng)日消費(fèi)金額為2000元,用第一種抽獎(jiǎng)方式進(jìn)行抽獎(jiǎng),求獲得獎(jiǎng)金70元的概率
(2)若某顧客在該商場(chǎng)當(dāng)日消費(fèi)金額為1200元,請(qǐng)同學(xué)們告訴這位顧客哪種抽獎(jiǎng)方式對(duì)他更有利.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表
商店名稱ABCDE
銷售額x(千萬元)35679
利潤(rùn)額y(百萬元)23345
(1)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程;
(2)當(dāng)銷售額為8(千萬元)時(shí),估計(jì)利潤(rùn)額的大小.
附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=sinx+cosx+sin2x,若?t∈R,x∈R,asint+3a+1≥f(x)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[0,+∞)B.$[\frac{{\sqrt{2}}}{2},+∞)$C.$[{\frac{{\sqrt{2}}}{4},+∞})$D.$[\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.一幾何體按比例繪制的三視圖如圖所示(單位:m).求它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a∈R,函數(shù)f(x)=x2(x-a),若函數(shù)f(x)在區(qū)間(0,$\frac{2}{3}$)內(nèi)是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N+
(Ⅰ)計(jì)算a2,a3;
(Ⅱ)求數(shù)列{an}通項(xiàng)公式an

查看答案和解析>>

同步練習(xí)冊(cè)答案