分析 x>0,y>0,且滿足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,化為:$\frac{2x+y}{2}$=8+$\frac{1}{x}+\frac{16}{2y}$,令2x+y=t>0,則$\frac{(2x+y)^{2}}{2}$=8(2x+y)+(2x+y)$(\frac{1}{x}+\frac{16}{2y})$,利用基本不等式的性質(zhì)化簡整理解出即可得出.
解答 解:∵x>0,y>0,且滿足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,
化為:$\frac{2x+y}{2}$=8+$\frac{1}{x}+\frac{16}{2y}$,
令2x+y=t>0,則$\frac{(2x+y)^{2}}{2}$=8(2x+y)+(2x+y)$(\frac{1}{x}+\frac{16}{2y})$=8(2x+y)+2+8+$\frac{y}{x}$+$\frac{16x}{y}$≥8(2x+y)+10+2$\sqrt{\frac{y}{x}×\frac{16x}{y}}$=8(2x+y)+18,
∴t2-16t-36≥0,
解得t≥18,即2x+y≥18,當(dāng)且僅當(dāng)y=4x=12時(shí)取等號.
故答案為:18.
點(diǎn)評 本題考查了基本不等式的性質(zhì)、不等式的解法,考查了變形推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 0 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,4) | B. | (4,4+2$\sqrt{2}$] | C. | [-4-2$\sqrt{2}$,-4) | D. | [-4-2$\sqrt{2}$,4+2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com