2.已知0<α<$\frac{π}{4}$,β為f(x)=sin(x+$\frac{π}{4}$)sin($\frac{π}{4}$-x)+2的最小正周期,$\overrightarrow{a}$=(tan(α+$\frac{1}{4}$β),-1),$\overrightarrow$=(cosα,2),$\overrightarrow{a}$•$\overrightarrow$=m,求$\frac{2co{s}^{2}α+sin2(α+β)}{cosα-sinα}$的值(用m表示)

分析 化簡(jiǎn)f(x),求出f(x)的最小正周期β,再計(jì)算$\overrightarrow{a}$•$\overrightarrow$的值,從而求出$\frac{2co{s}^{2}α+sin2(α+β)}{cosα-sinα}$的值.

解答 解:∵f(x)=sin(x+$\frac{π}{4}$)sin($\frac{π}{4}$-x)+2
=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+2
=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+2
=$\frac{1}{2}$cos2x+2,
∴f(x)的最小正周期β=π;
又$\overrightarrow{a}$=(tan(α+$\frac{1}{4}$β),-1),$\overrightarrow$=(cosα,2),
∴$\overrightarrow{a}$•$\overrightarrow$=tan(α+$\frac{π}{4}$)•cosα-2=m,
∴tan(α+$\frac{π}{4}$)cosα=m+2,
∴$\frac{2co{s}^{2}α+sin2(α+β)}{cosα-sinα}$=$\frac{{2cos}^{2}α+sin(2α+2π)}{cosα-sinα}$
=$\frac{{2cos}^{2}α+sin2α}{cosα-sinα}$
=$\frac{2cosα(cosα+sinα)}{cosα-sinα}$
=2cosα•$\frac{1+tanα}{1-tanα}$
=2cosα•tan($\frac{π}{4}$+α)
=2(m+2)
=2m+4.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與三角函數(shù)的化簡(jiǎn)、求值問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{3}$x3+(2a+1)x2+3a(a+2)x+1,a∈R.
(1)當(dāng)a=0時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(3,f(3))處的切線(xiàn)方程;
(2)當(dāng)a=-1時(shí),求函數(shù)y=f(x)在[0,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.計(jì)算cos$\frac{11π}{3}$+tan(-$\frac{3}{4}$π)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.極坐標(biāo)方程ρ=2$\sqrt{2}$cos($\frac{π}{4}-θ}$)表示圖形的面積是2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知△ABC的一個(gè)內(nèi)角為120°,并且三邊長(zhǎng)度構(gòu)成以首項(xiàng)為3的等差數(shù)列,則△ABC的最小角的余弦值為$\frac{13}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)的圖象在x=2處的切線(xiàn)方程為2x+y-3=0,則f(2)+f'(2)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.log39-4${\;}^{-\frac{1}{2}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,已知下列條件解三角形:
①A=60°,a=$\sqrt{3}$,b=1;
②A=30°,a=1,b=2;
③A=30°,c=10,a=6;
④A=30°,c=10,a=5,
其中有唯一解的序號(hào)為( 。
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知全集U=R,集合A={x|3≤x<7},B={x|2<x<10},求∁U(A∪B)、∁U(A∩B).

查看答案和解析>>

同步練習(xí)冊(cè)答案