12.若等比數(shù)列的首項為4,公比為2,則其前4項和是60.

分析 由已知條件利用等比數(shù)列的前n項和公式直接求解.

解答 解:∵等比數(shù)列的首項為4,公比為2,
∴其前4項和是:
${S}_{4}=\frac{4(1-{2}^{4})}{1-2}$=60.
故答案為:60.

點評 本題考查等比數(shù)列的前4項和的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,在△ABC中,已知點D在BC邊上,AD⊥AC,sin∠BAC=$\frac{{3\sqrt{2}}}{3}$,AB=6$\sqrt{2}$,AD=6,則BD的長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知二次函數(shù)f(x)=x2-4x+a+3,
(1)若函數(shù)y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x),x∈[t,4]的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,EC∥PD.且PD=2EC=$\sqrt{2}$.
(1)求證:AC∥平面PBE;
(2)若AD=1,求直線PB與底面ABCD所成角的大。
(3)若AD=1,求四棱錐B-PDCE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,已知AB=2,BC=1,AC=$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=( 。
A.-4B.-2C.0D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設全集U={1,2,3,4,5,6,7,8},A⊆U,B⊆U,且滿足A∩B={3},(∁UB)∩A={1,2},(∁UA)∩B={4,5},則∁U(A∪B)=(  )
A.{6,7,8}B.{7,8}C.{5,7,8}D.{5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{lna-lnx}{x}$在[1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是( 。
A.0<a≤$\frac{1}{e}$B.a$≥\frac{1}{e}$C.$\frac{1}{{e}^{2}}$<a≤$\frac{1}{e}$D.a≥$\frac{1}{{e}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.將5個小球放到3個盒子中,在下列條件下,各有多少種投放方法?
①小球不同,盒子不同,盒子不空;
 ②小球不同,盒子不同,盒子可空;
③小球不同,盒子相同,盒子不空;    
④小球不同,盒子相同,盒子可空;
⑤小球相同,盒子不同,盒子不空;   
⑥小球相同,盒子不同,盒子可空;
⑦小球相同,盒子相同,盒子不空;
⑧小球相同,盒子相同.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,a=x,b=1,B=30°,若此三角形只有一解,則x的取值范圍是(  )
A.2B.0<x≤1C.2或0<x≤1D.1≤x≤2

查看答案和解析>>

同步練習冊答案