5.已知$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow$=(0,-1,4),求$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{a}$•$\overrightarrow$,(2$\overrightarrow{a}$)•(-$\overrightarrow$),($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)

分析 利用向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算性質(zhì)即可得出.

解答 解:$\overrightarrow{a}$+$\overrightarrow$=(2,-1,-2)+(0,-1,4)=(2,-2,2),
$\overrightarrow{a}$-$\overrightarrow$=(2,-1,-2)-(0,-1,4)=(2,0,-6),
$\overrightarrow{a}$•$\overrightarrow$=(2,-1,-2)•(0,-1,4)=0+1-8=-7,
(2$\overrightarrow{a}$)•(-$\overrightarrow$)=-2$\overrightarrow{a}•\overrightarrow$=-2×(-7)=14,
($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=4+0-12=-8.

點(diǎn)評 本題考查了向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在正方體ABCD-A1B1C1D1中,求直線BC1與AC的夾角60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線的表達(dá)式是y=ax2+(1-a)x+1-2a(a為常數(shù)且不為0),無論a為何值,上述拋物線始終經(jīng)過x軸上的一定點(diǎn)A與第一象限內(nèi)的另一定點(diǎn)B.
(1)如圖1,當(dāng)拋物線與x軸只有一個公共點(diǎn)時,求a的值;
(2)請寫出A,B兩點(diǎn)的坐標(biāo):A(-1,0),B(2,3);
(3)如圖2,當(dāng)a<0時,若上述拋物線頂點(diǎn)是D,與x軸的另一交點(diǎn)為點(diǎn)C,且點(diǎn)A,B,C,D中沒有兩個點(diǎn)相互重合.
①△ABC能否是直角三角形,為什么?
②若使得△ABD是直角三角形,請你求出a的值(求出1個a的值即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-\frac{1}{x},x>0}\\{{2}^{x}-4,x≤0}\end{array}\right.$.
(1)求f(1)的值;
(2)證明函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(3)求f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.當(dāng)a>0,0≤x≤1時,討論函數(shù)y=f(x)=-x2+2ax的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在正四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,O是AC與BD的交點(diǎn),PO=1,M是PC的中點(diǎn).
(1)設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{AP}$=$\overrightarrow{c}$,用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示向量$\overrightarrow{BM}$;
(2)在如圖的空間直角坐標(biāo)系中,求向量$\overrightarrow{BM}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C:y2=2px(p>0)的頂點(diǎn)關(guān)于直線l:y=$\frac{1}{2}$x+$\frac{5}{4}$的對稱點(diǎn)在拋物線C的準(zhǔn)線l1上.
(1)求拋物線C的方程;
(2)設(shè)直線l2:3x-4y+7=0,在拋物線C求一點(diǎn)P,使得P到直線l1和l2的距離之和最小,并求最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)M(-5,0),N(0,5),P為橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上一動點(diǎn),則S△MNP的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在等差數(shù)列{an}中,設(shè)a3=5,S3=9,在等比數(shù)列{bn}中,設(shè)b2=4與b5=32,解答下列問題:
(1)求an;
(2)求bn;
(3)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案