【題目】已知定義在R上的函數(shù)f(x)=x3+(k-1)x2+(k+5)x-1.
(1)若k=-5,求f(x)的極值;
(2)若f(x)在區(qū)間(0,3)內(nèi)單調(diào),求實(shí)數(shù)k的取值范圍.
【答案】(1)f(x)極大值是f(0)=-1,f(x)極小值是f(4)=-33;
(2)
【解析】
(1)代入k的值,求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,即可求出函數(shù)的極值;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論對稱軸的范圍,得到函數(shù)的單調(diào)區(qū)間,從而確定k的范圍即可.
解:(1)k=-5時(shí),f(x)=x3-6x2-1,
f′(x)=3x2-12x,
令f′(x)>0,解得:x>4或x<0,
令f′(x)<0,解得:0<x<4,
故f(x)在(-∞,0)遞增,在(0,4)遞減,在(4,+∞)遞增,
故x=0時(shí),f(x)取極大值,且極大值是f(0)=-1,
x=4時(shí),f(x)取極小值,且極小值是f(4)=-33;
(2)f′(x)=3x2+2(k-1)x+k+5=3-+k+5,
f′(x)的圖象是開口向上的拋物線,對稱軸是直線x=,
①當(dāng)≤0即k≥1時(shí),f′(0)=k+5>0且f′(x)在(0,3)遞增,
故f′(x)>0在(0,3)內(nèi)恒成立,
故f(x)在(0,3)遞增,即k≥1時(shí)滿足題意;
②當(dāng)≥3即k≤-8時(shí),f′(0)=k+5<0且f′(x)在(0,3)遞減,
故f′(x)<0在(0,3)內(nèi)恒成立,
故f(x)在(0,3)內(nèi)遞減,即k≤-8滿足題意;
③當(dāng)0<<3即-8<k<1時(shí),
(。┤-8<k≤-5,則f′(0)=k+5≤0,
只需f′(3)=7k+26≤0即k≤ -,
此時(shí)f′(x)≤0在(0,3)內(nèi)恒成立,
即f(x)在(0,3)遞減,
(ⅱ)若-5<k<1,則f′(0)=k+5>0,
此時(shí)只需f′()=-+k+5≥0,
解得:
即-2≤k<1時(shí),f′(x)≥0在(0,3)內(nèi)恒成立,
即-2≤k<1時(shí),f(x)在(0,3)遞增,
綜上,若f(x)在區(qū)間(0,3)內(nèi)單調(diào),實(shí)數(shù)k的范圍是(-∞,-5]∪[-2,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·山東卷)已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.在中,若,則
B.在銳角三角形中,不等式恒成立
C.在中,若,,則為等腰直角三角形
D.在中,若,,三角形面積,則三角形外接圓半徑為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是AB的中點(diǎn),F在CC1上,且CF=2FC1,點(diǎn)P是側(cè)面AA1D1D(包括邊界)上一動(dòng)點(diǎn),且PB1∥平面DEF,則tan∠ABP的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面ABCD⊥平面ADEF,其中四邊形ABCD為矩形,四邊形ADEF為梯形,AF∥DE,AF⊥EF,AF=AD=2AB=2DE=2.
(1)求證:CE∥面ABF;
(2)求直線DE與平面BDF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,,直線與平面所成的角等于.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,圓與軸負(fù)半軸交于點(diǎn),過點(diǎn)的直線,分別與圓交于兩點(diǎn).
(1)過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,求;
(2)若,求證:直線過定點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com