19.在平面直角坐標(biāo)系xOy中,設(shè)定點(diǎn)A(a,a)(a>0),P是函數(shù)y=$\frac{1}{x}$(x>0)圖象上一動(dòng)點(diǎn),若點(diǎn)P,A之間的最短距離為2$\sqrt{2}$,則滿足條件的正實(shí)數(shù)a的值為$\sqrt{10}$.

分析 設(shè)點(diǎn)P(x,$\frac{1}{x}$)(x>0),利用兩點(diǎn)間的距離公式可得|PA|,令t=x+$\frac{1}{x}$,由x>0,可得t≥2,令g(t)=t2-2at+2a2-2=(t-a)2+a2-2,討論a的范圍:當(dāng)0<a≤2時(shí),當(dāng)a>2時(shí),利用基本不等式和二次函數(shù)的單調(diào)性即可得出a的值.

解答 解:設(shè)點(diǎn)P(x,$\frac{1}{x}$)(x>0),
則|PA|=$\sqrt{(x-a)^{2}+(\frac{1}{x}-a)^{2}}$
=$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2a(x+\frac{1}{x})+2{a}^{2}}$
=$\sqrt{(x+\frac{1}{x})^{2}-2a(x+\frac{1}{x})+2{a}^{2}-2}$,
令t=x+$\frac{1}{x}$,由x>0,可得t≥2,
令g(t)=t2-2at+2a2-2=(t-a)2+a2-2,
①當(dāng)0<a≤2時(shí),t=2時(shí)g(t)取得最小值g(2)=2-4a+2a2=(2 $\sqrt{2}$)2,
解得a=-1,3,均舍去;
②當(dāng)a>2時(shí),g(t)在區(qū)間[2,a)上單調(diào)遞減,在(a,+∞)單調(diào)遞增,
可得t=a,g(t)取得最小值g(a)=a2-2,可得a2-2=(2 $\sqrt{2}$)2,解得a=$\sqrt{10}$(負(fù)的舍去).
綜上可知:a=$\sqrt{10}$.
故答案為:$\sqrt{10}$.

點(diǎn)評(píng) 本題綜合考查了兩點(diǎn)間的距離公式、基本不等式的性質(zhì)、二次函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)和基本技能,考查了分類討論的思想方法、推理能力和計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知ABCD-A1B1C1D1是平行六面體,設(shè)M是底面ABCD中AC與BD的交點(diǎn),N是側(cè)面BCC1B1對(duì)角線BC1上的點(diǎn),且$\overrightarrow{BN}$=$\frac{1}{3}$$\overrightarrow{N{C}_{1}}$,設(shè)$\overrightarrow{MN}$=α$\overrightarrow{AB}$+β$\overrightarrow{AD}$+γ$\overrightarrow{A{A}_{1}}$,則α、β、γ的值分別為-$\frac{1}{2}$,$\frac{3}{4}$,$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在三棱錐P-ABC中,PA=BC=4,PB=AC=5,$PC=AB=\sqrt{11}$,則三棱錐P-ABC的外接球的表面積為26π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{lnx}{x}$-mx(m∈R).
(Ⅰ)當(dāng)m=0時(shí),求函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)當(dāng)m≥0時(shí),求證:函數(shù)f(x)有且只有一個(gè)極值點(diǎn);
(Ⅲ)當(dāng)b>a>0時(shí),總有$\frac{f(b)-f(a)}{b-a}$>1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知四棱錐P-ABCD,底面ABCD為矩形,PA⊥平面ABCD,PA=AB=2,該四棱錐外接球的體積為8$\sqrt{6}$π,則△PBC的面積為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若正數(shù)x,y滿足x+3y=xy,則3x+4y的最小值是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若數(shù)列{an}滿足:對(duì)任意的n∈N*,只有有限個(gè)正整數(shù)m使得am<n成立,記這樣的m的個(gè)數(shù)為bn,則得到一個(gè)新數(shù)列{bn}.例如,若數(shù)列{an}是1,2,3,…,n…,則數(shù)列{bn}是0,1,2,…,n-1,…現(xiàn)已知數(shù)列{an}是等比數(shù)列,且a2=2,a5=16,則數(shù)列{bn}中滿足bi=2016的正整數(shù)i的個(gè)數(shù)為22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M,N分別為A1B1,C1C的中點(diǎn).
(1)畫出過D,M,N點(diǎn)的平面與平面BB1C1C及與平面AA1B1B的交線;
(2)設(shè)過D,M,N三點(diǎn)的平面與B1C1交于P,求PM+PN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線的標(biāo)準(zhǔn)方程是y2=6x,
(1)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,
(2)直線L過已知拋物線的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為A、B,求AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案