15.已知橢圓C的兩個(gè)焦點(diǎn)是$(0\;,\;-\sqrt{3})$和$(0\;,\;\sqrt{3})$,并且經(jīng)過點(diǎn)$(\frac{{\sqrt{3}}}{2}\;,\;1)$,拋物線E的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F.
(Ⅰ)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求|AF|•|FB|+|FG|•|HF|的最小值.

分析 (Ⅰ)由2c=2$\sqrt{3}$,c=$\sqrt{3}$,將$(\frac{{\sqrt{3}}}{2}\;,\;1)$代入$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-3}=1$,即可求得a和b的值,求得橢圓方程和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)由題意求得直線l1、l2的方程,將直線l1、l2代入代入拋物線方程,利用韋達(dá)定理,表示出|AF|•|FB|+|FG|•|HF|=|x1+1|•|x2+1|+|x3+1|•|x4+1|,由基本不等式性質(zhì)可知$\frac{4}{k^2}=4{k^2}$,即k=±1時(shí),|AF|•|FB|+|FG|•|HF|的最小值為16.

解答 解:(Ⅰ)設(shè)橢圓C的標(biāo)準(zhǔn)方程為$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$,焦距為2c,
則由題意得$c=\sqrt{3}\;,\;{a^2}=4$,
∴橢圓方程為$\frac{y^2}{4}+{x^2}=1$,拋物線方程為y2=4x.…4分
(Ⅱ)設(shè)l1的方程為:y=k(x-1),l2的方程為:$y=-\frac{1}{k}(x-1)$,
設(shè)A(x1,y1),B(x2,y2),C(x3,y3),H(x4,y4).
由$\left\{\begin{array}{l}y=k(x-1)\\{y^2}=4x\end{array}\right.$消去y得:k2x2-(2k2+4)x+k2=0,
∴$△=4{k^4}+16{k^2}+16-4{k^4}>0\;,\;{x_1}+{x_2}=2+\frac{4}{k^2}\;,\;{x_1}{x_2}=1$,
同理${x_3}+{x_4}=4{k^2}+2\;,\;{x_3}{x_4}=1$.…6分
∴|AF|•|FB|+|FG|•|HF|=|x1+1|•|x2+1|+|x3+1|•|x4+1|,…8分
=$({x_1}{x_2}+{x_1}+{x_2}+1)+({x_3}{x_4}+{x_3}+{x_4}+1)=8+\frac{4}{k^2}+4{k^2}$,
$≥8+2\sqrt{\frac{4}{k^2}•4{k^2}}=16$,
當(dāng)且僅當(dāng)$\frac{4}{k^2}=4{k^2}$,
即k=±1時(shí),|AF|•|FB|+|FG|•|HF|的最小值為16.…12分.

點(diǎn)評(píng) 本題考查橢圓及拋物線的標(biāo)準(zhǔn)方程,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理,弦長(zhǎng)公式及基本不等式的綜合運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={x||2x-1|<3,$B=\{\left.x\right|\frac{2x+1}{3-x}<0\}$,則A∪B=( 。
A.$\{\left.x\right|-1<x<-\frac{1}{2}或2<x<3\}$B.{x|2<x<3}
C.{x|x<2或x>3}D.$\{\left.x\right|-\frac{1}{2}<x<2\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)等差數(shù)列{an}的前5項(xiàng)和為48,前10項(xiàng)和為60,則前15項(xiàng)和為( 。
A.36B.72C.83D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓的中心在原點(diǎn),離心率$e=\frac{1}{2}$且它的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則此橢圓的方程為( 。
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{8}+\frac{y^2}{6}=1$C.$\frac{x^2}{2}+{y^2}=1$D.$\frac{x^2}{4}+{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2-ln(x+a)+b,g(x)=x3
(1)若函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程為x+y=0,求實(shí)數(shù)a,b的值;
(2)在(1)的條件下,當(dāng)x∈(0,+∞)時(shí),求證:f(x)<g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.小明和電腦進(jìn)行一次答題比賽,共4局,每局10分,現(xiàn)將小明和電腦的4局比賽的得分統(tǒng)計(jì)如表:
小明5768
電腦69510
(1)求小明和電腦在本次比賽中的平均得分x1,x2及方差s12,s22;
(2)從小明和電腦的4局比賽得分中隨機(jī)各選取1個(gè)分?jǐn)?shù),并將其得分分別記為m,n,求|m-n|>2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,摩天輪的半徑為50m,點(diǎn)O距地面的高度為60m,摩天輪做勻速轉(zhuǎn)動(dòng),每3min轉(zhuǎn)一圈,摩天輪上點(diǎn)P的起始位置在最低點(diǎn)處.
(1)試確定在時(shí)刻t(min)時(shí)點(diǎn)P距離地面的高度;
(2)在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距離地面超過85m?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知關(guān)于x的方程3cos2x+2sinx+a-4=0在區(qū)間[0,$\frac{π}{2}$]上有兩個(gè)不同的解,則a的取值范圍為$(\frac{2}{3},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等差數(shù)列-$\frac{7}{2}$,-3,-$\frac{5}{2}$,-2,…的第n+1項(xiàng)為$\frac{-7+n}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案