3.已知橢圓的中心在原點(diǎn),離心率$e=\frac{1}{2}$且它的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則此橢圓的方程為( 。
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{8}+\frac{y^2}{6}=1$C.$\frac{x^2}{2}+{y^2}=1$D.$\frac{x^2}{4}+{y^2}=1$

分析 拋物線y2=4x的焦點(diǎn)為(1,0),可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意可得:$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2,c=1.聯(lián)立解出即可得出.

解答 解:拋物線y2=4x的焦點(diǎn)為(1,0),
∴可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得:$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2,c=1.
解得:c=1,a=2,b2=3.
∴此橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
故選:A.

點(diǎn)評(píng) 本題考查了橢圓與拋物線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行抽樣調(diào)查,調(diào)查結(jié)果如表所示
喜歡甜品不喜歡甜品總計(jì)
南方學(xué)生503080
北方學(xué)生101020
總計(jì)6040100
(1)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”
(2)已知在被調(diào)查的北方學(xué)生中有4人是數(shù)學(xué)系的學(xué)生,其中2人喜歡甜品,現(xiàn)在從這4名學(xué)生中隨機(jī)抽取2人,求恰有1人喜歡甜品的概率?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
下面的臨界表供參考:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列結(jié)構(gòu)圖中,各要素之間表示從屬關(guān)系的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.函數(shù)$y=\frac{{{x^2}-x+n}}{{{x^2}+1}}(n∈{N^*},且y≠1)$的最大值為an,最小值為bn,且${c_n}=4({a_n}•{b_n}-\frac{1}{2})$.
(1)求函數(shù){cn}的通項(xiàng)公式;
(2)若數(shù)列{dn}的前n項(xiàng)和為Sn,且滿足Sn+dn=1.設(shè)數(shù)列{cn•dn}的前n項(xiàng)和為Tn,求證:Tn<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ax2-2x+1+lnx
(Ⅰ)若f(x)無(wú)極值點(diǎn),但其導(dǎo)函數(shù)f′(x)有零點(diǎn),求a的取值;
(Ⅱ)若f(x)有兩個(gè)極值點(diǎn),求a的取值范圍,并證明f(x)的極小值小于$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.將數(shù)列{2n-1}按“第n組有n個(gè)數(shù)”的規(guī)則分組如下:(1),(3,5),(7,9,11),…,則第100組中的第三個(gè)數(shù)是9905.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C的兩個(gè)焦點(diǎn)是$(0\;,\;-\sqrt{3})$和$(0\;,\;\sqrt{3})$,并且經(jīng)過(guò)點(diǎn)$(\frac{{\sqrt{3}}}{2}\;,\;1)$,拋物線E的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F.
(Ⅰ)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求|AF|•|FB|+|FG|•|HF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=-x2+2lnx,g(x)=x+$\frac{a}{x}$
(1)求函數(shù)y=f(x)與y=g(x)有相同極值點(diǎn),求實(shí)數(shù)a的值;
(2))若對(duì)于?x1,x2∈[$\frac{1}{e}$,3](e為自然對(duì)數(shù)的底數(shù)),不等式$\frac{f({x}_{1})-g({x}_{2})}{k-1}$≤1恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知△ABC的三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且sinA=2sinC,b2=ac,則cosB=$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案