【題目】中國(guó)倉(cāng)儲(chǔ)指數(shù)是反映倉(cāng)儲(chǔ)行業(yè)經(jīng)營(yíng)和國(guó)內(nèi)市場(chǎng)主要商品供求狀況與變化趨勢(shì)的已套指數(shù)體系.如圖所示的折線(xiàn)圖是2017年和2018年的中國(guó)倉(cāng)儲(chǔ)指數(shù)走勢(shì)情況.根據(jù)該折線(xiàn)圖,下列結(jié)論中不正確的是( 。

A. 20181月至4月的倉(cāng)儲(chǔ)指數(shù)比2017年同期波動(dòng)性更大

B. 這兩年的最大倉(cāng)儲(chǔ)指數(shù)都出現(xiàn)在4月份

C. 2018年全年倉(cāng)儲(chǔ)指數(shù)平均值明顯低于2017

D. 2018年各倉(cāng)儲(chǔ)指數(shù)的中位數(shù)與2017年各倉(cāng)儲(chǔ)指數(shù)中位數(shù)差異明顯

【答案】D

【解析】

根據(jù)折線(xiàn)圖逐一驗(yàn)證各選項(xiàng).

通過(guò)圖象可看出,20181月至4月的倉(cāng)儲(chǔ)指數(shù)比2017年同期波動(dòng)性更大, 這兩年的最大倉(cāng)儲(chǔ)指數(shù)都出現(xiàn)在4月份, 2018年全年倉(cāng)儲(chǔ)指數(shù)平均值明顯低于2017,所以選項(xiàng)A,BC的結(jié)論都正確;2018年各倉(cāng)儲(chǔ)指數(shù)的中位數(shù)與2017年各倉(cāng)儲(chǔ)指數(shù)中位數(shù)基本在52%, ∴選項(xiàng)D的結(jié)論錯(cuò)誤.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若的一條切線(xiàn),求的值;

(3)已知,為整數(shù),若對(duì)任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長(zhǎng)為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2

(1)求證:AC⊥BE;

(2)若點(diǎn)F到平面DCE的距離為,求直線(xiàn)EC與平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)Cx22pyp0)的焦點(diǎn)到直線(xiàn)l2xy10的距離為

1)求拋物線(xiàn)的方程;

2)過(guò)點(diǎn)P0t)(t0)的直線(xiàn)l與拋物線(xiàn)C交于A,B兩點(diǎn),交x軸于點(diǎn)Q,若拋物線(xiàn)C上總存在點(diǎn)M(異于原點(diǎn)O),使得∠PMQ=∠AMB90°,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次函數(shù)fx)=ax22bx+8

1)設(shè)集合P{1,2,3}Q{23,4,5},分別從集合PQ中隨機(jī)取一個(gè)數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣2]上有零點(diǎn)且為減函數(shù)的概率?

2)設(shè)集合P[13]Q[2,5],分別從集合PQ中隨機(jī)取一個(gè)實(shí)數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點(diǎn)且為減函數(shù)的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)氣象局統(tǒng)計(jì),某市2019年從11日至130日這30天里有26天出現(xiàn)霧霾天氣.國(guó)際上通常用環(huán)境空氣質(zhì)量指數(shù)(AQI)來(lái)描述污染狀況,下表是某氣象觀(guān)測(cè)點(diǎn)記錄的連續(xù)4天里,該市AQI指數(shù)與當(dāng)天的空氣水平可見(jiàn)度的情況.

AQI指數(shù)

900

700

300

100

空氣水平可見(jiàn)度

0.5

3.5

6.5

9.5

1)設(shè),根據(jù)表中的數(shù)據(jù),求出關(guān)于的回歸方程;

2)若某天該市AQT指數(shù),那么當(dāng)天空氣水平可見(jiàn)度大約為多少?

附:參考數(shù)據(jù):,.

參考公式:線(xiàn)性回歸力程中,,,其中為樣本平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為1+cos2θ=8sinθ

1)求曲線(xiàn)C的普通方程;

2)直線(xiàn)l的參數(shù)方程為,t為參數(shù)直線(xiàn)y軸交于點(diǎn)F與曲線(xiàn)C的交點(diǎn)為AB,當(dāng)|FA||FB|取最小值時(shí),求直線(xiàn)的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩種棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位: ) 組成一個(gè)樣本,且將纖維長(zhǎng)度超過(guò)315的棉花定為一級(jí)棉花.設(shè)計(jì)了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對(duì)甲、乙兩種棉花的纖維長(zhǎng)度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論(不必計(jì)算);

(2)從樣本中隨機(jī)抽取甲、乙兩種棉花各2根,求其中恰有3根一級(jí)棉花的概率;

(3)用樣本估計(jì)總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機(jī)抽取1根,求其中一級(jí)棉花根數(shù)X的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.下圖所示的陽(yáng)馬中,側(cè)棱底面ABCD,且,則當(dāng)點(diǎn)E在下列四個(gè)位置:PA中點(diǎn)、PB中點(diǎn)、PC中點(diǎn)、PD中點(diǎn)時(shí)分別形成的四面體中,鱉臑有( )個(gè).

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案