5.已知集合A={x|-2<x<-1或x>0},B={x|a≤x≤b},滿足A∩B={x|0<x≤2},A∪B={x|x>-2},求實數(shù)a,b的值.

分析 由A,B,以及A與B的交集及并集,確定出a與b的值即可.

解答 解:∵A={x|-2<x<-1或x>0},B={x|a≤x≤b},且A∩B={x|0<x≤2},A∪B={x|x>-2},
∴a=-1,b=2.

點評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,已知BC=6,C=45°,cosA=$\frac{4}{5}$,則△ABC的面積為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某教育機(jī)構(gòu)為了解我省廣大師生對新高考改革方案的看法,對某市部分學(xué)校的600名師生進(jìn)行調(diào)查,統(tǒng)計結(jié)果如下:
贊成改革不贊成改革無所謂
教師人數(shù)120y30
學(xué)生人數(shù)xz110
在這600名師生中隨機(jī)抽取1人,這個人“贊成改革”且是學(xué)生的概率為0.4,已知y=$\frac{2}{3}$z
(1)現(xiàn)從這600名師生中用分層抽樣的方法抽取60人進(jìn)行問卷調(diào)查,則應(yīng)抽取“不贊成改革”的教師和學(xué)生的人數(shù)各是多少?
(2)在(1)中抽取的“不贊成改革”的教師中(甲在其中),隨機(jī)選出2人進(jìn)行座談,求教師甲被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果不等式(m+1)x2+2(m+1)x+1>0對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是( 。
A.[-1,0)B.(-1,0)C.(-1,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=x2-alnx在x=1處取極值,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x3-3x+2的極大值點是( 。
A.x=±1B.x=1C.x=0D.x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)當(dāng)x=θ時,函數(shù)f(x)=2sinx-cosx取得最大值,則cosθ=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某單位的迎新年活動中有一個節(jié)目,參與者擲一顆骰子連續(xù)三次,制定規(guī)則如下:
擲出的點數(shù)分為三組(1,6),(2,5),(3,4),若其中有連續(xù)兩次擲出的點數(shù)在同一組,
如“1,6,3”“1,1,4”“5,3,4”等,則參與者獲獎.參與者獲獎的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是某賽季甲、乙兩名籃球運(yùn)動員得分情況的莖葉圖,從此圖可看出甲、乙兩人得分的中位數(shù)為( 。
A.31,26B.26,23C.36,26D.31,23

查看答案和解析>>

同步練習(xí)冊答案