20.若函數(shù)f(x)=x2-alnx在x=1處取極值,則a=2.

分析 求出函數(shù)的導(dǎo)數(shù),得到f′(1)=0,得到關(guān)于a的方程,解出即可.

解答 解:∵f(x)=x2-alnx,x>0,
∴f′(x)=2x-$\frac{a}{x}$=$\frac{{2x}^{2}-a}{x}$,
若函數(shù)f(x)在x=1處取極值,
則f′(1)=2-a=0,解得:a=2,
經(jīng)檢驗,a=2符合題意,
故答案為:2.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=$\frac{\sqrt{5x-2}}{x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)=lnx-ax+1(a為實常數(shù))在x=1處的切線與直線y=2016平行.
(1)求a的值;   
(2)求f(x)的單調(diào)區(qū)間;
(3)證明當(dāng)x∈(1,+∞)時,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合S={x|x2-5x+6≥0},T={x|x>0},則S∩T=( 。
A.(0,2]∪[3,+∞)B.[2,3]C.(-∞,2]∪[3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于R上可導(dǎo)的任意函數(shù)f(x),若滿足$\frac{1-x}{f′(x)}$≥0,則必有( 。
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)>2f(1)D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|-2<x<-1或x>0},B={x|a≤x≤b},滿足A∩B={x|0<x≤2},A∪B={x|x>-2},求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知冪函數(shù)f(x)的圖象過點(2,$\frac{1}{4}$),則f(x)的單調(diào)減區(qū)間為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2+xlnx-1,a∈R,其中e是自然對數(shù)的底數(shù).
(1)當(dāng)a=0時,求函數(shù)f(x)的極值;
(2)若f(x)在區(qū)間[1,5]上為單調(diào)函數(shù),求a的取值范圍;
(3)當(dāng)a=-e時,試判斷方程|f(x)+1|=lnx+$\frac{3}{2}$x是否有實數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求實數(shù)a的值;
(2)若關(guān)于x的方程,f(x)=-$\frac{5}{2}$x+b在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)b的取值范圍;
(3)證明:對任意的正整數(shù)n,不等式ln$\frac{n+2}{2}$<$\frac{1}{1}$+$\frac{1}{2}$+…+$\frac{1}{n}$都成立.

查看答案和解析>>

同步練習(xí)冊答案