分析 (1)列出x、y滿足的關(guān)系式為$\left\{\begin{array}{l}200x+100y≤50000\\ 300x+300y≤90000\\ x≥0\\ y≥0\end{array}\right.$,畫出不等式組所表示的平面區(qū)域即可.
(2)設(shè)該廠所得利潤(rùn)為z元,寫出目標(biāo)函數(shù),利用目標(biāo)函數(shù)的幾何意義,求解目標(biāo)函數(shù)z=300x+200y,所獲得利潤(rùn).
解答 (本小題滿分13分)
(1)解:由已知x、y滿足的關(guān)系式為$\left\{\begin{array}{l}200x+100y≤50000\\ 300x+300y≤90000\\ x≥0\\ y≥0\end{array}\right.$,等價(jià)于$\left\{\begin{array}{l}2x+y≤500\\ x+y≤300\\ x≥0\\ y≥0\end{array}\right.$…(3分)
該二元一次不等式組所表示的平面區(qū)域如圖中的陰影部分 …(6分)
(2)解:設(shè)該廠所得利潤(rùn)為z元,則目標(biāo)函數(shù)為z=300x+200y…(8分)
將z=300x+200y變形為$y=-\frac{3}{2}x+\frac{z}{200}$,這是斜率為$-\frac{3}{2}$,在y軸上截距為$\frac{z}{200}$、隨z變化的一族平行直線.…(9分)
又因?yàn)閤、y滿足約束條件,所以由圖可知,當(dāng)直線$y=-\frac{3}{2}x+\frac{z}{200}$經(jīng)過(guò)可行域上的點(diǎn)M時(shí),截距$\frac{z}{200}$最大,即z最大…(10分)
解方程組$\left\{\begin{array}{l}2x+y=500\\ x+y=300\end{array}\right.$得點(diǎn)M的坐標(biāo)為(200,100)且恰為整點(diǎn),即x=200,y=100…(11分)
所以,zmax=300×200+200×100=80000…(12分)
答:該廠編制200個(gè)花籃,100花盆所獲得利潤(rùn)最大,最大利潤(rùn)為8萬(wàn)元.…(13分)
點(diǎn)評(píng) 本題考查線性規(guī)劃的實(shí)際應(yīng)用,列出約束條件以及目標(biāo)函數(shù)是解題的關(guān)鍵,注意目標(biāo)函數(shù)的幾何意義的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com