【題目】在三角形內(nèi),我們將三條邊的中線的交點稱為三角形的重心,且重心到任一頂點的距離是到對邊中點距離的兩倍類比上述結論:在三棱錐中,我們將頂點與對面重心的連線段稱為三棱錐的“中線”,將三棱錐四條中線的交點稱為它的“重心”,則棱錐重心到頂點的距離是到對面重心距離的______倍
科目:高中數(shù)學 來源: 題型:
【題目】已知、分別為雙曲線的左右焦點,左右頂點為、,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們稱一個非負整數(shù)集合(非空)為好集合,若對任意,或者,或者.以下記為的元素個數(shù).
(Ⅰ)給出所有的元素均小于的好集合;(給出結論即可)
(Ⅱ)求出所有滿足的好集合;(同時說明理由)
(Ⅲ)若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)設是曲線上的一點,直線被曲線截得的弦長為,求點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在實數(shù)集上的奇函數(shù),且當時, .
(Ⅰ)求函數(shù)在上的解析式;
(Ⅱ)判斷在上的單調(diào)性;
(Ⅲ)當取何值時,方程在上有實數(shù)解?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個“數(shù)對”;設函數(shù)的定義域為,且.
(Ⅰ)若是的一個“數(shù)對”,且,求常數(shù)的值;
(Ⅱ)若是的一個“數(shù)對”,求;
(Ⅲ)若是的一個“數(shù)對”,且當, ,求的值及在區(qū)間上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個分點.
(1)從這5個點中任取3個點,求這3個點組成直角三角形的概率;
(2)在半圓內(nèi)任取一點,求的面積大于的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com