15.寫出命題p:“?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],恒有sinx+cosx≤$\sqrt{2}$“的否定:?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],使得sinx+cosx>$\sqrt{2}$.

分析 直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以,命題p:“?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],恒有sinx+cosx≤$\sqrt{2}$“的否定:“?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],使得sinx+cosx>$\sqrt{2}$”.
故答案為:?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],使得sinx+cosx>$\sqrt{2}$.

點評 本題考查命題的否定,全稱命題與特稱命題的否定,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.設橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點F為拋物線y2=4x的焦點.
(1)求橢圓C的方程;
(2)過F任作兩條互相垂直的直線l1,l2與橢圓C分別交于A,B兩點和C,D兩點;
①試探究$\frac{1}{|AB|}$+$\frac{1}{|CD|}$是否為定值?若是,求出這個定值,若不是,請說明理由;
②求四邊形ACBD面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若數(shù)列{an}的前n項和為Sn,且Sn+an=2n,n∈N*
(1)證明:數(shù)列{an-2}為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若關于x的不等式|x+1|+|x-2|+m-7>0的解集為R,則實數(shù)m的取值范圍為( 。
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{k(x+2),x≤0}\\{-lnx,x>0}\end{array}\right.$(k<0),若函數(shù)y=f(f(x))-1有3個零點,則實數(shù)k的取值范圍為k<-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設L為曲線C:y=$\frac{lnx}{x}$在點(1,0)處的切線.
(1)求L的方程;
(2)證明:曲線C不可能在直線L的上方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,圓C與圓D半徑分別為r1,r2,相交于A,B兩點,直線l1過點A,分別交圓C、圓D于點M、N(M、N在A的異側(cè)),直線l2過點B,分別交圓C、圓D于點P,Q(P、Q在B的異側(cè)),且l1平行于
l2,點C,D在l1與l2之間.
(1)求證:四邊形MNQP為平行四邊形;
(2)若四邊形MABP面積與四邊形NABQ面積相等,求證:線段AB與線段IJ互相平分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知四面體ABCD中,AB、AC、AD兩兩垂直,且AB=1,AC=2,AD=4,則點A到平面BCD的距離是(  )
A.$\frac{2}{{\sqrt{21}}}$B.$\frac{3}{{\sqrt{21}}}$C.$\frac{4}{{\sqrt{21}}}$D.$\frac{5}{{\sqrt{21}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a-1)x2+bx(a,b為常數(shù)),在x=1和x=4處取得極值.
(1)求f(x);
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習冊答案