12.某小學(xué)對(duì)學(xué)生的記憶能力x與識(shí)圖能力y進(jìn)行統(tǒng)計(jì)分析,得到如表數(shù)據(jù):
記憶能力x46810
識(shí)圖能力y3568
(1)試求y與x之間的回歸直線方程;
(2)當(dāng)小明同學(xué)的記憶能力為14時(shí),用回歸直線方程預(yù)測他的識(shí)圖能力的值.
參考公式:回歸直線的方程是$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x.

分析 (1)利用平均數(shù)公式求出樣本的中心點(diǎn)坐標(biāo),利用公式求出回歸系數(shù),即可求y與x之間的回歸直線方程;
(2)將x=14代入可得答案.

解答 解:(1)∵$\overline{x}$=$\frac{1}{4}$(4+6+8+10)=7;$\overline{y}$=$\frac{1}{4}$(3+5+6+8)=5.5,
∴樣本的中心點(diǎn)坐標(biāo)為(7,5.5),
b=$\frac{12+30+48+80-4×7×5.5}{16+36+64+100-5×49}$=0.8
∴$\widehat{a}$=5.5-0.8×7=-0.1.
∴$\widehat{y}$=0.8x-0.1,
(2)當(dāng)x=14時(shí),$\widehat{y}$=0.8×14-0.1=11.1,即當(dāng)小明同學(xué)的記憶能力為14時(shí),預(yù)測他的識(shí)圖能力的值為11.1.

點(diǎn)評(píng) 本題考查了線性回歸方程系數(shù)的求法,在線性回歸分析中,利用樣本中心點(diǎn)在回歸直線上是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=60°,AP=AC=AD=2,E為CD的中點(diǎn),M在AB上,且$\overrightarrow{AM}$=2$\overrightarrow{MB}$.
(I)求證:EM∥平面PAD;
(Ⅱ)求平面PAD與平面PBC所成銳二面角的余弦值;
(Ⅲ) 點(diǎn)F是線段PD上異于兩端點(diǎn)的任意一點(diǎn),若滿足異面直線EF與AC所成角45°,求AF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如表提供了甲產(chǎn)品的產(chǎn)量x(噸)與利潤y(萬元)的幾組對(duì)照數(shù)據(jù).
x3456
y2.5344.5
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)計(jì)算相關(guān)指數(shù)R2的值,并判斷線性模型擬合的效果.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某奶茶店為了解白天平均氣溫與某種飲料銷量之間的關(guān)系進(jìn)行分析研究,記錄了2月21日至2月25日
的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):
平均氣溫x(℃)91112108
銷量y(杯)2326302521
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ) 試根據(jù)(1)求出的線性回歸方程,預(yù)測平均氣溫約為20℃時(shí)該奶茶店的這種飲料銷量.
(參考:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$•$\overline{x}$;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.調(diào)查某公司的五名推銷員,某工作年限與年推銷金額如表:
推銷員ABCDE
工作年限x(萬元)23578
年推銷金額y(萬元)33.546.58
(Ⅰ)畫出年推銷金額y關(guān)于工作年限x的散點(diǎn)圖,并從散點(diǎn)圖中發(fā)現(xiàn)工作年限與年推銷金額之間關(guān)系的一般規(guī)律;
(Ⅱ)利用最小二乘法求年推銷金額y關(guān)于工作年限x的回歸直線方程;
(Ⅲ)利用(Ⅱ)中的回歸方程,預(yù)測工作年限是10年的推銷員的年推銷金額.
附:$\widehat$=$\frac{\sum_{i-1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i-1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)橢圓x2+$\frac{{y}^{2}}{m}$=1上恰有兩點(diǎn)到直線y=x+4的距離等于$\sqrt{2}$,則m的取值范圍為3<m<35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,短軸長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l:y=kx+m(k≠0)與y軸的交點(diǎn)為A(點(diǎn)A不在橢圓外),且與橢圓交于兩個(gè)不同的點(diǎn)P,Q,PQ的中垂線恰好經(jīng)過橢圓的下端點(diǎn)B,且與線段PQ交于點(diǎn)C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=|log3(x+1)|,實(shí)數(shù)m,n滿足-1<m<n,且f(m)=f(n).若f(x)在區(qū)間[m2,n]上的最大值為2,則$\frac{m}{n}$=( 。
A.-9B.-8C.-$\frac{1}{9}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用輾轉(zhuǎn)相除法或更相減損術(shù)求459與357的最大公約數(shù)是51.

查看答案和解析>>

同步練習(xí)冊(cè)答案