A. | ?x∈(0,$\frac{π}{2}$),x>sinx | B. | ?x0∈R,sinx0+cosx0=2 | ||
C. | “?x∈R,3x>0” | D. | ?x0∈R,x0+$\frac{1}{x_0}$=-3 |
分析 利用導(dǎo)數(shù)法,可得:?x∈(0,$\frac{π}{2}$),f(x)=x-sinx>0,可判斷A;
求出sinx+cosx的取值范圍,可判斷B;
由指數(shù)函數(shù)的圖象和性質(zhì),可判斷C;
根據(jù)對(duì)勾函數(shù)的圖象和性質(zhì),可判斷D.
解答 解:令f(x)=x-sinx,則f′(x)=1-cosx≥0恒成立,
由f(0)=0得:?x∈(0,$\frac{π}{2}$),f(x)>0,即x>sinx,故A為真命題;
sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],2∉[-$\sqrt{2}$,$\sqrt{2}$],故B這假命題;
由指數(shù)函數(shù)的圖象和性質(zhì),可得“?x∈R,3x>0”,故C為真命題
x0+$\frac{1}{x_0}$∈(-∞,-2]∪[2,+∞),-3∈(-∞,-2]∪[2,+∞),故D為真命題,
故選:B.
點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了全稱命題和特特命題的判斷,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 11 | B. | 13 | C. | 14 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com