分析 求出$\overrightarrow{a},\overrightarrow$的夾角,建立平面直角坐標(biāo)系,設(shè)$\overrightarrow{a}$=(2,0),則$\overrightarrow$=(1,$\sqrt{3}$),根據(jù)數(shù)量積的幾何意義得出C的軌跡,利用點(diǎn)到圓的最短距離求出|2$\overrightarrow$-$\overrightarrow{c}$|的最小值.
解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow$|=$\overrightarrow{a}$•$\overrightarrow$=2,∴cos<$\overrightarrow{a},b$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{1}{2}$,
∴<$\overrightarrow{a},\overrightarrow$>=60°.
設(shè)$\overrightarrow{OA}=\overrightarrow{a}$=(2,0),$\overrightarrow{OB}$=$\overrightarrow$=(1,$\sqrt{3}$),$\overrightarrow{OC}=\overrightarrow{c}$,
∵($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=0,
∴$\overrightarrow{CA}⊥\overrightarrow{CB}$,∴C的軌跡為以AB為直徑的圓M.
其中M($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),半徑r=1.
延長(zhǎng)OB到D,則D(2,2$\sqrt{3}$).連結(jié)DM,交圓M于C點(diǎn),則CD為|2$\overrightarrow$-$\overrightarrow{c}$|的最小值.
DM=$\sqrt{(2-\frac{3}{2})^{2}+(2\sqrt{3}-\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{7}$.
∴CD=$\sqrt{7}-1$.
故答案為:$\sqrt{7}$-1.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,平面向量的幾何意義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |z1|=|$\overline{{z}_{1}}$|=$\sqrt{{{z}_{1}}^{2}}$ | |
B. | 若|z2|=2,則z2的取值集合為{-2,2,-2i,2i}(i是虛數(shù)單位) | |
C. | 若z12+z22=0,則z1=0或z2=0 | |
D. | z1$\overline{{z}_{2}}$+$\overline{{z}_{1}}$z2一定是實(shí)數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 11 | 10.5 | 10 | 9.5 | 9 |
y | 5 | 6 | 8 | 10 | 10 |
A. | 16個(gè) | B. | 20個(gè) | C. | 24個(gè) | D. | 28個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com