2.函數(shù)f(x)滿足:對任意的x,均有f(x+$\frac{3π}{2}$)=-$\frac{1}{f(x)}$,當x∈[-π,π]時,f(x)=xsinx,則f(-8.5π)=$\frac{π}{2}$.

分析 根據(jù)f(x+$\frac{3π}{2}$)=-$\frac{1}{f(x)}$,求出f(-8.5π)=f($\frac{π}{2}$),代入函數(shù)表達式,求出即可.

解答 解:∵f(x+$\frac{3π}{2}$)=-$\frac{1}{f(x)}$,
∴f(-8.5π)=-$\frac{1}{f(-7π)}$=f(-$\frac{11π}{2}$)=-$\frac{1}{f(-4π)}$=f(-$\frac{5}{2}$π)=-$\frac{1}{f(-π)}$=f($\frac{π}{2}$),
或∵f(x+$\frac{3π}{2}$)=-$\frac{1}{f(x)}$,∴f(x+3π)=f(x),函數(shù)f(x)的周期是3π,
∴f(-8.5π)=f($\frac{π}{2}$),
當x∈[-π,π]時,f(x)=xsinx,
則f(-8.5π)=f($\frac{π}{2}$)=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.

點評 本題考查了函數(shù)的周期性,考查求函數(shù)值問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=$\overrightarrow{a}$•$\overrightarrow$=2,且($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=0,則|2$\overrightarrow$-$\overrightarrow{c}$|的最小值為$\sqrt{7}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在某城市氣象部門的數(shù)據(jù)中,隨機抽取100天的空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如表
空氣質(zhì)量指數(shù)t(0,50](50,100](100,150](150,200)(200,300](300,+∞)
質(zhì)量等級優(yōu)輕微污染輕度污染中度污染嚴重污染
天數(shù)K52322251510
(1)若該城市各醫(yī)院每天收治上呼吸道病癥總人數(shù)y與當天的空氣質(zhì)量t(t取整數(shù))存在如下關系y=$\left\{\begin{array}{l}{t,t≤100}\\{2t-100,100<t≤300}\\{\;}\end{array}\right.$且當t>300時,y>500,估計在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;
(2)若在(1)中,當t>300時,y與t的關系擬合與曲線 $\stackrel{∧}{y}$=a+blnt,現(xiàn)已取出了10對樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10)且知$\sum_{i=1}^{10}$lnti=70,$\sum_{i=1}^{10}$yi=6000,$\sum_{i=1}^{10}$yilnti=42500,$\sum_{i=1}^{10}$(lnti2=500試用可線性化的回歸方法,求擬合曲線的表達式
(附:線性回歸方程$\stackrel{∧}{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.給出下列函數(shù);
①函數(shù)y=sin(2017π+2016x)是奇函數(shù);
②y=tanx在整個定義域內(nèi)是增函數(shù);
③x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5}{4}$π)的一條對稱軸方程;
④若α,β是第一象限的角,且α>β,則sinα>sinβ
其中真確命題的序號是①③ (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.某產(chǎn)品廣告費用x與銷售額y(單位:萬元)的統(tǒng)計數(shù)據(jù)如表,根據(jù)如表得到回歸方程$\stackrel{∧}{y}$=10.6x+a,則a=5.9.
廣告費用x4235
銷售額y(萬元)49263958

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知正項數(shù)列{an}前n項和為Sn,且2Sn=an2+n-1(n∈N+).
(Ⅰ)求數(shù)列{an}通項公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知x,y的取值如表:
 x
 y 11.3 3.2 5.6 8.9 
若依據(jù)表中數(shù)據(jù)所畫的散點圖中,所有樣本點(xi,yi)(i=1,2,3,4,5)都在曲線y=$\frac{1}{2}$x2+a附近波動,則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{an}是首項為4,公差為3的等差數(shù)列,數(shù)列{bn}滿足bn(an$\sqrt{{a}_{n+1}}$+an+1$\sqrt{{a}_{n}}$)=1,則數(shù)列{bn}的前32項的和為$\frac{2}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設x,y滿足條件$\left\{{\begin{array}{l}{2x+y≥4,\;\;}\\ \begin{array}{l}x-y≥1\\ x-2y≤2\end{array}\end{array}}\right.$且z=x+y+a(a為常數(shù))的最小值為4,則實數(shù)a的值為( 。
A.$\frac{5}{3}$B.2C.4D.5

查看答案和解析>>

同步練習冊答案