分析 (1)直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案;
(2)把z代入az+b=1-i,然后利用復數(shù)相等的條件列式求得實數(shù)a,b的值.
解答 解:(1)$z=\frac{{{{(1-i)}^2}-3(1+i)}}{2-i}$=$\frac{-3-5i}{2-i}=\frac{(-3-5i)(2+i)}{(2-i)(2+i)}$=$-\frac{1}{5}-\frac{13}{5}i$;
(2)由az+b=1-i,得$a(-\frac{1}{5}-\frac{13}{5}i)+b=1-i$,
即$-\frac{a}{5}+b-\frac{13a}{5}i=1-i$,
∴$\left\{\begin{array}{l}{-\frac{a}{5}+b=1}\\{-\frac{13a}{5}=-1}\end{array}\right.$,解得$a=\frac{5}{13},b=\frac{14}{13}$.
點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)相等的條件,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若l⊥β,則 α⊥β | B. | 若α⊥β,則l⊥m | C. | 若l∥β,則α∥β | D. | 若α∥β,則l∥m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(0,±\sqrt{m-n})$ | B. | $(±\sqrt{m-n},0)$ | C. | $(0,±\sqrt{n-m})$ | D. | $(±\sqrt{n-m},0)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com