6.動點P在拋物線x2=2y上,過點P作PQ垂直于x軸,垂足為Q,設(shè)$\overrightarrow{PM}=\frac{1}{2}\overrightarrow{PQ}$.
(Ⅰ)求點M的軌跡E的方程;
(Ⅱ)設(shè)點S(-4,4),過點N(4,5)的直線l交軌跡E于A,B兩點,設(shè)直線SA,SB的斜率分別為k1,k2,求k1k2的值.

分析 (I)設(shè)M的坐標(biāo),根據(jù)中點坐標(biāo)公式,將P點坐標(biāo)代入整理可求得M的軌跡方程;
(II)直線l過點N,設(shè)l的方程為:y=k(x-4)+5,與E聯(lián)立,整理得:x2-4kx+16k-20=0,根據(jù)韋達定理,分類討論l是否經(jīng)過點S,并分別求得直線的斜率,即可求得k1k2的值.

解答 解:(I)設(shè)點M(x,y),P(x0,y0),則由$\overrightarrow{PM}=\frac{1}{2}\overrightarrow{PQ}$,得$\left\{\begin{array}{l}{x_0}=x\\{y_0}=2y\end{array}\right.$,(3分)
因為點P在拋物線x2=2y上,所以,x2=4y..(6分)
(II):由已知,直線l的斜率一定存在,設(shè)直線l的方程為:y=k(x-4)+5,
設(shè)點A(x1,y1),B(x2,y2),則聯(lián)立$\left\{\begin{array}{l}y=k(x-4)+5\\{x^2}=4y\end{array}\right.$,
整理得:x2-4kx+16k-20=0,
由韋達定理,得$\left\{\begin{array}{l}{x_1}+{x_2}=4k\\{x_1}{x_2}=16k-20\end{array}\right.$,(8分)
當(dāng)直線l經(jīng)過點S即x1=-4或x2=-4時,
當(dāng)x1=-4時,直線SA的斜率看作拋物線在點A處的切線斜率,
則k1=-2,${k_2}=\frac{1}{8}$,此時${k_1}{k_2}=-\frac{1}{4}$;
同理,當(dāng)點B與點S重合時,${k_1}{k_2}=-\frac{1}{4}$(學(xué)生如果沒有討論,不扣分)
直線l不經(jīng)過點S即x1≠-4且x2≠-4時,
∵${k_1}=\frac{{{y_1}-4}}{{{x_1}+4}},{k_2}=\frac{{{y_2}-4}}{{{x_2}+4}}$,
∴${k_1}{k_2}=\frac{{(k{x_1}-4k+1)(k{x_2}-4k+1)}}{{({x_1}+4)({x_2}+4)}}$,
=$\frac{{{k^2}{x_1}{x_2}+(k-4{k^2})({x_1}+{x_2})+16{k^2}-8k+1}}{{{x_1}{x_2}+4({x_1}+{x_2})+16}}$,
=$\frac{1-8k}{32k-4}=-\frac{1}{4}$.(12分)

點評 本題主要考查軌跡方程的求法,直線和圓錐曲線的位置關(guān)系的應(yīng)用,韋達定理的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)定義在(-1,1)上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=5+cosx,且f(0)=0,則不等式f(x-1)+f(1-x2)<0的解集為( 。
A.{x|1$<x<\sqrt{2}$}B.{x|x>1或x<-1}C.{x|-1<x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了,冰淇淋會從杯子溢出嗎?請計算說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}中,a3=5,a4+a8=22,則a9的值為( 。
A.14B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知拋物線C1:y2=-4x的準(zhǔn)線經(jīng)過拋物線C2:y2=2px的焦點
(Ⅰ)求拋物線C2的方程;
(Ⅱ)點M,N分別在拋物線C1,C2上,且點M,N分別位于第三、第一象限.若拋物線C2上存在一點Q,滿足$\overrightarrow{OM}$+λ$\overrightarrow{OQ}$=$\overrightarrow{ON}$(O為坐標(biāo)原點),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≥0)
(1)當(dāng)a=0時,求f(x)的極值;
(2)當(dāng)a<0時,討論f(x)的單調(diào)性;
(3)若對于任意的x1,x2∈[1,3],a∈(-∞,-2)都有|f(x1)-f(x2)|<(m+ln3)a-2ln3,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線C:y2=8x的焦點為F,P為拋物線的準(zhǔn)線上的一點,且P的縱坐標(biāo)為正數(shù),Q是直線PF與拋物線C的一個交點,若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,則直線PF的方程為( 。
A.x-y-2=0B.x+y-2=0C.x±y-2=0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某幾何體的三視圖如圖所示,則此幾何體的體積和表面積分別為( 。
A.$\frac{8}{3}$,6+2$\sqrt{2}$+2$\sqrt{5}$B.8,6+2$\sqrt{2}$+2$\sqrt{5}$C.8,6+2$\sqrt{2}$+4$\sqrt{5}$D.$\frac{8}{3}$,6+2$\sqrt{2}$+4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知正項數(shù)列{an}滿足:Sn2=a13+a23+…+an3(n∈N*),其中Sn為數(shù)列{an}的前n項的和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:$\frac{2n+1}{(n+1)\sqrt{n+1}}$<($\frac{1}{{a}_{1}}$)${\;}^{\frac{3}{2}}$+($\frac{1}{{a}_{2}}$)${\;}^{\frac{3}{2}}$+($\frac{1}{{a}_{3}}$)${\;}^{\frac{3}{2}}$+…+($\frac{1}{{a}_{2n+1}}$)${\;}^{\frac{3}{2}}$<3.

查看答案和解析>>

同步練習(xí)冊答案