14.等差數(shù)列{an}中,a3=5,a4+a8=22,則a9的值為( 。
A.14B.17C.19D.21

分析 由已知求得2a6,結(jié)合a3=5,再由等差數(shù)列的性質(zhì)求得a9的值.

解答 解:在等差數(shù)列{an}中,由a4+a8=22,得2a6=22,
又a3=5,由等差數(shù)列的性質(zhì)可得:a9=2a6-a3=22-5=17.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P(a,b)是拋物線y=$\frac{1}{20}{x}^{2}$上的一點(diǎn),焦點(diǎn)為F,若|PF|=25,則|ab|=( 。
A.400B.360C.200D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=$\frac{\sqrt{{a}^{2}+^{2}}}{2}$.運(yùn)用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,求其外接球的半徑R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2ex-lnx.(ln2≈0.6931,$\sqrt{e}$≈1.649)
(Ⅰ)當(dāng)x≥1時(shí),判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x>0時(shí),不等式f(x)>1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線y=x+a與曲線f(x)=x•lnx+b相切,其中a、b∈R,則b-a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow m=(sinx,cos(x+\frac{π}{4}))$,$\overrightarrow n=(cosx,-cos(x+\frac{π}{4}))$,且$f(x)=\overrightarrow m•\overrightarrow n$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)$g(x)=f(x)-2{sin^2}x-m+\frac{3}{2}$在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$上有零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.動(dòng)點(diǎn)P在拋物線x2=2y上,過點(diǎn)P作PQ垂直于x軸,垂足為Q,設(shè)$\overrightarrow{PM}=\frac{1}{2}\overrightarrow{PQ}$.
(Ⅰ)求點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)S(-4,4),過點(diǎn)N(4,5)的直線l交軌跡E于A,B兩點(diǎn),設(shè)直線SA,SB的斜率分別為k1,k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sin2(x+$\frac{π}{4}$)-$\sqrt{3}$cos(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$),x∈R
(1)求函數(shù)y=f(x)的圖象的對(duì)稱中心;
(2)將函數(shù)y=f(x)的圖象向下平移$\frac{1}{2}$個(gè)單位.再向左平移$\frac{π}{3}$個(gè)單位得函數(shù)y=g(x)的圖象,試寫出y=g(x)的解析式并作出它在[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(0,$\sqrt{2}$),且其離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)斜率為$\frac{1}{2}$的直線l交橢圓C于兩個(gè)不同點(diǎn)A、B,點(diǎn)M的坐標(biāo)為(2,1),設(shè)直線MA與MB的斜率分別為k1、k2
①若直線l過橢圓C的左頂點(diǎn),求此時(shí)k1、k2的值;
②試探究k1+k2是否為定值?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案