16.設(shè)定義在(-1,1)上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=5+cosx,且f(0)=0,則不等式f(x-1)+f(1-x2)<0的解集為( 。
A.{x|1$<x<\sqrt{2}$}B.{x|x>1或x<-1}C.{x|-1<x<1}D.{x|0<x<1}

分析 由題意函數(shù)的導(dǎo)函數(shù)f′(x)=5+cosx,恒正,故函數(shù)是增函數(shù),再由函數(shù)是奇函數(shù)將不等式f (x-1)+f (1-x2)<0轉(zhuǎn)化為f (x-1)<f (x2-1),由單調(diào)性及定義轉(zhuǎn)化為不等式組解之即可.

解答 解:∵函數(shù)的導(dǎo)函數(shù)f′(x)=5+cosx,恒正,
∴函數(shù)是增函數(shù),
∵y=f(x)的導(dǎo)函數(shù)為f′(x)=5+cosx,
∴f(x)=5x+sinx+c,
∵f(0)=0,
∴f(0)=0+0+c=0,
解得c=0,
∴f(x)=5x+sinx,
∵f(-x)=-5x-sinx=-(5x+sinx)=-f(x),
∴函數(shù)f(x)為奇函數(shù),
則不等式f (x-1)+f (1-x2)<0轉(zhuǎn)化為f (x-1)<f (x2-1),
∴$\left\{\begin{array}{l}{-1<x-1<1}\\{-1{<x}^{2}-1<1}\\{{x}^{2}-1>x-1}\end{array}\right.$,解得x∈(1,$\sqrt{2}$)
故選:A.

點(diǎn)評 本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系以及抽象不等式的解法,求解本題的關(guān)鍵是根據(jù)導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性以及利用奇函數(shù)的性質(zhì)與單調(diào)性將不等式轉(zhuǎn)化為不等式組,本題求解時易因?yàn)橥浂x域的限制導(dǎo)致解題失敗,解題時不要忘記驗(yàn)證函數(shù)有意義的范圍即函數(shù)的定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若方程ax2+by=4的曲線經(jīng)過點(diǎn)A(0,2)和B($\frac{1}{2}$,$\sqrt{3}$),則a=16-8$\sqrt{3}$,b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-ax-a2lnx(a≠0).
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的最值;
(Ⅱ)試討論函數(shù)f(x)在(1,+∞)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P(a,b)是拋物線y=$\frac{1}{20}{x}^{2}$上的一點(diǎn),焦點(diǎn)為F,若|PF|=25,則|ab|=( 。
A.400B.360C.200D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足xf′(x)+2f(x)=$\frac{1}{x^2}$,且f(1)=1.
(Ⅰ)求出f(x)的解析式;并求出函數(shù)的最大值;
(Ⅱ)求證:當(dāng)x≥1時,不等式f(x)>$\frac{2sinx}{{x({x+1})}}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損法的思路與圖相似.執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≤0\\ y≥1\end{array}\right.$,則$z={({\frac{1}{2}})^{-2x+y}}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=$\frac{\sqrt{{a}^{2}+^{2}}}{2}$.運(yùn)用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,求其外接球的半徑R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.動點(diǎn)P在拋物線x2=2y上,過點(diǎn)P作PQ垂直于x軸,垂足為Q,設(shè)$\overrightarrow{PM}=\frac{1}{2}\overrightarrow{PQ}$.
(Ⅰ)求點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)S(-4,4),過點(diǎn)N(4,5)的直線l交軌跡E于A,B兩點(diǎn),設(shè)直線SA,SB的斜率分別為k1,k2,求k1k2的值.

查看答案和解析>>

同步練習(xí)冊答案