分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{(5-a)x-3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$為R上的增函數(shù),則$\left\{\begin{array}{l}5-a>0\\ a>1\\ 5-a-3≤0\end{array}\right.$,解得實(shí)數(shù)a的取值范圍.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(5-a)x-3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$為R上的增函數(shù),
∴$\left\{\begin{array}{l}5-a>0\\ a>1\\ 5-a-3≤0\end{array}\right.$,
解得a∈[2,5),
故答案為:[2,5)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)的單調(diào)性,正確理解分段函數(shù)單調(diào)的含義,是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 3 | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 3 | C. | $\sqrt{7}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2$\sqrt{2}$] | B. | [2$\sqrt{2}$,3] | C. | [-2$\sqrt{2}$,3] | D. | λ=3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com