設(shè)三棱柱的側(cè)棱垂直于底面,所有棱的長都為a,頂點都在一個球面上,則該球的表面積為( )
A.πa2 B.πa2 C.πa2 D.5πa2
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第七章 立體幾何(解析版) 題型:填空題
(2014·荊州模擬)湖面上漂著一個小球,湖水結(jié)冰后將球取出,冰面上留下了一個直徑為12cm,深2cm的空穴,則該球的半徑是________cm,表面積是________cm2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:解答題
已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最。
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題
如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.
(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:填空題
某幾何體的三視圖如圖3所示,則其體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點,下面四個結(jié)論中不成立的( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDE⊥平面ABC
D.平面PAE⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題
如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.
(1)求此人到達當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(2)求此人在該市停留期間只有1天空氣重度污染的概率;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:解答題
(2013·天津模擬)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn,bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an},{bn}的通項公式.
(2)求數(shù)列{an·bn}的前n項和Dn.
(3)設(shè)cn=an·sin2-bn·cos2(n∈N*),求數(shù)列{cn}的前2n項和T2n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C交于兩點A和B,設(shè)P為橢圓上一點,且滿足·(O為坐標(biāo)原點),當(dāng) 時,求實數(shù)t取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com