【題目】已知函數(shù),,.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知在上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.
【答案】(1)答案見解析;(2).
【解析】
試題分析:(1)求出函數(shù)的定義域,利用奇偶性的定義即可判斷;(2)【方法一】,利用單調(diào)性的定義法及在上單調(diào)遞減,推出不等式,解不等式即可求實(shí)數(shù)k的取值范圍;【方法二】設(shè),則,,結(jié)合復(fù)合函數(shù)的單調(diào)性的性質(zhì),再對(duì)進(jìn)行分類討論,即可求得實(shí)數(shù)k的取值范圍.
試題解析:(1)函數(shù)定義域?yàn)?/span>
∵
∴不是奇函數(shù)
∵
∴令恒成立,
所以當(dāng)時(shí),函數(shù)為偶函數(shù);
當(dāng)時(shí),函數(shù)是非奇非偶函數(shù)
(2)【方法一】對(duì)任意,且,有恒成立.
∴
∵
∴恒成立
∴,即.
【方法二】設(shè),則,
當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以滿足條件;
當(dāng)時(shí),時(shí)單調(diào)遞減,單調(diào)遞增.
∴,即.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形,,.是的中點(diǎn),底面,在平面上的正投影為點(diǎn),延長(zhǎng)交于點(diǎn).
(1)求證:為中點(diǎn);
(2)若,,在棱上確定一點(diǎn),使得平面,并求出與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,點(diǎn),直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上的任一點(diǎn),都有為一常數(shù),試求出所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員名
(1)若采用分層抽樣的方法隨機(jī)抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類服務(wù)員的人數(shù)是16, 求的值
(2)某客戶來公司聘請(qǐng)2名家政服務(wù)員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇
①請(qǐng)列出該客戶的所有可能選擇的情況
②求該客戶最終聘請(qǐng)的家政服務(wù)員中既有A類又有B類的概率來源:學(xué)|科|網(wǎng)]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)相鄰兩對(duì)稱軸間的距離為,若將的圖象先向左平移個(gè)單位,再向下平移1個(gè)單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對(duì)稱中心;
(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com