4.若直線l1:2x-ay-1=0與直線l2:x+2y=0垂直,則a=1.

分析 利用直線垂直的條件求解.

解答 解:∵兩直線l1:2x-ay-1=0與直線l2:x+2y=0互相垂直,
∴2-2a=0,
解得a=1.
故答案為:1.

點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意兩直線的位置關(guān)系的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.甲與其四位朋友各有一輛私家車,車牌尾數(shù)分別是0,0,2,1,5,為遵守當(dāng)?shù)啬吃?日至9日5天的限行規(guī)定(奇數(shù)日車牌尾數(shù)為奇數(shù)的車通行,偶數(shù)日車牌尾數(shù)為偶數(shù)的車通行),五人商議拼車出行,每天任選一輛符合規(guī)定的車,但甲的車最多只能用一天,則不同的用車方案總數(shù)為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知m,n表示兩條不同直線,α表示平面,有下列四個(gè)命題,其中正確的命題的個(gè)數(shù)( 。
①若m∥α,n∥α,則m∥n;②若m∥n,n?α,則m∥α;③若m⊥α,m⊥n,則n∥α;④若m∥α,m⊥n,則n⊥α
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a=5${\;}^{\frac{1}{2}}}$,b=log2$\frac{1}{5}$,c=log5$\frac{1}{2}$,則( 。
A.b>c>aB.a>b>cC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的焦距為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若tan(α+$\frac{π}{4}$)=sin2α+cos2α,α∈($\frac{π}{2}$,π),則tan(π-α)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x>2,log2(x+$\frac{4}{x}$)>2,則( 。
A.$?p:?x>2,{log_2}(x+\frac{4}{x})≤2$且¬p為真命題
B.$?p:?x≤2,{log_2}(x+\frac{4}{x})>2$且¬p為真命題
C.$?p:?x>2,{log_2}(x+\frac{4}{x})≤2$且¬p為假命題
D.$?p:?x≤2,{log_2}(x+\frac{4}{x})>2$且¬p為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.證明:若 n∈N +,則3 2n+3-24n+37能被64整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,過F的直線l與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,橢圓的離心率為$\frac{2}{3}$.如果|AB|=$\frac{15}{4}$,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案