12.已知二項(xiàng)式(x5+$\frac{1}{x}$)n的展開式中含有常數(shù)項(xiàng),則正整數(shù)n的最小值為6.

分析 利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),令x的指數(shù)為0方程有解.由于n,r都是整數(shù)求出最小的正整數(shù)n即可.

解答 解:二項(xiàng)式(x5+$\frac{1}{x}$)n展開式的通項(xiàng)為:
Tr+1=Cnrx5n-6r,
令5n-6r=0,
據(jù)題意此方程有解,
∴n=$\frac{6}{5}$r,
當(dāng)r=5時(shí),n的最小值為6.
故答案為:6.

點(diǎn)評(píng) 本題考查了利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為30°,|$\overrightarrow{AC}$|=2,|$\overrightarrow{AB}-\overrightarrow{AC}$|=$\sqrt{2}$,求$\overrightarrow{AB}$與$\overrightarrow{AB}$-$\overrightarrow{AC}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.$\frac{5π}{2}+\sqrt{3}$B.$\frac{3π}{2}+2$C.$\frac{π}{2}+\sqrt{3}$D.$\frac{3π}{2}+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某中學(xué)共有1000名學(xué)生參加考試,成績(jī)?nèi)绫恚?br />
成績(jī)分組[0,30)[30,60)[60,90)[90,120)[120,150)
人   數(shù)6090300x160
(1)為了了解同學(xué)們的具體情況,學(xué)校將采取分層抽樣的方法,抽取100名同學(xué)進(jìn)行問卷調(diào)查,甲同學(xué)在本次測(cè)試中成績(jī)?yōu)?5分,求他被抽中的概率.
(2)本次數(shù)學(xué)成績(jī)的優(yōu)秀成績(jī)?yōu)?10分,試估計(jì)該中學(xué)達(dá)到優(yōu)秀線的人數(shù).
(3)作出頻率分布直方圖,并據(jù)此估計(jì)該校本次考試的平均分(用同一組中得到數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若i(bi+1)是純虛數(shù),i是虛數(shù)單位,則實(shí)數(shù)b=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.現(xiàn)從男、女共8名學(xué)生干部中選出3名同學(xué)(要求3人中既有男同學(xué)又有女同學(xué))分別參加全!百Y源”、“生態(tài)”和“環(huán)保”三個(gè)夏令營(yíng)活動(dòng),共有270種不同的安排,那么8名學(xué)生中男、女同學(xué)的人數(shù)分別是(  )
A.男同學(xué)1人,女同學(xué)7人B.男同學(xué)2人,女同學(xué)6人
C.男同學(xué)3人,女同學(xué)5人D.男同學(xué)4人,女同學(xué)4人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$tan(α+\frac{π}{4})=2$,則tan2α=(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$-\frac{3}{4}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.二項(xiàng)式(2x2-$\frac{1}{x}$)6展開式中,x-3項(xiàng)的系數(shù)為-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{6}+{a}_{7}}{{a}_{8}+{a}_{9}}$等于( 。
A.1+$\sqrt{2}$B.1-$\sqrt{2}$C.3+2$\sqrt{2}$D.3-2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案