5.如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點(diǎn),AC⊥BC,且AC=BC=2
(1)求證:AM⊥平面EBC
(2)(文)求三棱錐C-ABE的體積.
(2)(理)求二面角A-EB-C的大。

分析 (1)推導(dǎo)出EA⊥AC,從而EA⊥平面ABC,以點(diǎn)A為原點(diǎn),以過A點(diǎn)平行于BC的直線為x軸,以AC和AE為y軸和z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能證明AM⊥平面EBC.
(2)(文)由VC-ABE=VE-ABC,能求出三棱錐C-ABE的體積.
(2)(理)求出平面EAB的法向量和平面EBC的一個(gè)法向量,利用向量法能求出二面角A-EB-C的大。

解答 證明:(1)∵四邊形ACDE是正方形,∴EA⊥AC,
∵平面ACDE⊥平面ABC,∴EA⊥平面ABC,
∴以點(diǎn)A為原點(diǎn),以過A點(diǎn)平行于BC的直線為x軸,以AC和AE為y軸和z軸,
建立如圖空間直角坐標(biāo)系A(chǔ)-xyz.
設(shè)EA=AC=BC=2,則A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),
∵M(jìn)是正方形ACDE的對(duì)角線的交點(diǎn),∴M(0,1,1).
$\overrightarrow{AM}$=(0,1,1),$\overrightarrow{EC}$=(0,2,-2),$\overrightarrow{CB}$=(2,0,0),
∴$\overrightarrow{AM}•\overrightarrow{EC}$=0,$\overrightarrow{AM}•\overrightarrow{CB}$=0,∴AM⊥EC,AM⊥CB,
∴AM⊥平面EBC.
(2)(文) VC-ABE=VE-ABC=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
(2)(理)設(shè)平面EAB的法向量為$\overrightarrow{n}$=(x,y,z),
則$\overrightarrow{n}⊥\overrightarrow{AE}$,且$\overrightarrow{n}⊥\overrightarrow{AB}$,
∴$\overrightarrow{n}•\overrightarrow{AE}=0$,且$\overrightarrow{n}•\overrightarrow{AB}=0$.
∴$\left\{\begin{array}{l}{2z=0}\\{2x+2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,0).
又∵$\overrightarrow{AM}$為平面EBC的一個(gè)法向量,且$\overrightarrow{AM}$=(0,1,1),
∴cos<$\overrightarrow{n},\overrightarrow{AM}$>=$\frac{\overrightarrow{n}•\overrightarrow{AM}}{|\overrightarrow{n}|•|\overrightarrow{AM}|}$=-$\frac{1}{2}$,
設(shè)二面角A-EB-C的平面角為θ,則cosθ=|cos<$\overrightarrow{n},\overrightarrow{AM}$>|=$\frac{1}{2}$,
∴θ=60°.
∴二面角A-EB-C的大小為60°.

點(diǎn)評(píng) 本題考查線面垂直的證明,考查三棱錐體積的求法,考查二面角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知y=f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)≤f(2a-1),則實(shí)數(shù)a的取值范圍為(0,$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-8,|${\overrightarrow{BC}}$|=6,D為BC中點(diǎn),則|${\overrightarrow{AD}}$|=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=2x-5,g(x)=4x-x2,給下列三個(gè)命題:
p1:若x∈R,則f(x)f(-x)的最大值為16;
p2:不等式f(x)<g(x)的解集為集合{x|-1<x<3}的真子集;
p3:當(dāng)a>0時(shí),若?x1,x2∈[a,a+2],f(x1)≥g(x2)恒成立,則a≥3,
那么,這三個(gè)命題中所有的真命題是( 。
A.p1,p2,p3B.p2,p3C.p1,p2D.p1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(理)定積分${∫}_{0}^{5}$$\sqrt{25-{x}^{2}}$dx的值為$\frac{25π}{4}$ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=(${\frac{1}{2}}$)${\;}^{{x^2}-2x}}$的值域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.[2,+∞)C.(-∞,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},則M∩(∁UN)=( 。
A.{2,3,4}B.{2}C.{3}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,則x-y的最小值為( 。
A.0B.-1C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是同一平面內(nèi)的三個(gè)向量,其中$\overrightarrow a$=(1,2).
(1)若|${\overrightarrow c}$|=2$\sqrt{5}$,且$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$的坐標(biāo)
(2)若|${\overrightarrow b}$|=$\frac{{\sqrt{5}}}{2}$,且$\overrightarrow a$+2$\overrightarrow b$與$\overrightarrow a$-$\overrightarrow b$垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角θ

查看答案和解析>>

同步練習(xí)冊(cè)答案