【題目】已知函數(shù),
(
,
為自然對數(shù)的底數(shù)).
(1)試討論函數(shù)的極值情況;
(2)證明:當(dāng)且
時,總有
.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)求定義域內(nèi)的所有根;判斷
的根
左右兩側(cè)值的符號即可得結(jié)果;(2)當(dāng)
時,
,研究函數(shù)的單調(diào)性,兩次求導(dǎo),可證明
在
內(nèi)為單調(diào)遞增函數(shù),進(jìn)而可得當(dāng)
時,
,即可得結(jié)果.
試題解析:(1)的定義域?yàn)?/span>
,
.
①當(dāng)時,
,故
在
內(nèi)單調(diào)遞減,
無極值;
②當(dāng)時,令
,得
;令
,得
.
故在
處取得極大值,且極大值為
,
無極小值.
(2)證法一:當(dāng)時,
.
設(shè)函數(shù)
,
則.記
,
則.
當(dāng)變化時,
,
的變化情況如下表:
由上表可知,
而
,
由,知
,
所以,
所以,即
.
所以在
內(nèi)為單調(diào)遞增函數(shù).
所以當(dāng)時,
.
即當(dāng)且
時,
.
所以當(dāng)且
時,總有
.
證法二:當(dāng)時,
.
因?yàn)?/span>且
,故只需證
.
當(dāng)時,
成立;
當(dāng)時,
,即證
.
令,則由
,得
.
在內(nèi),
;
在內(nèi),
,
所以.
故當(dāng)時,
成立.
綜上得原不等式成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn)
,極軸為
軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系
中,曲線
的參數(shù)方程為:
(
為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與曲線
的普通方程;
(2)若用代換曲線
的普通方程中的
得到曲線
的方程,若
分別是曲線
和曲線
上的動點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某測試團(tuán)隊(duì)為了研究“飲酒”對“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測試,測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子停下所需要的距離),無酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表
停車距離 | |||||
頻數(shù) | 26 | 8 | 2 |
表
平均每毫升血液酒精含量 | 10 | 30 | 50 | 70 | 90 |
平均停車距離 | 30 | 50 | 60 | 70 | 90 |
已知表 數(shù)據(jù)的中位數(shù)估計(jì)值為
,回答以下問題.
(Ⅰ)求的值,并估計(jì)駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表的數(shù)據(jù)計(jì)算
關(guān)于
的回歸方程
;
(Ⅲ)該測試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的
倍,則認(rèn)定駕駛員是“醉駕”.請根據(jù)(Ⅱ)中的回歸方程,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時為“醉駕”?
(附:回歸方程中,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)2lnx(a為常數(shù)).
(1)若f(x)在(1,f(1))處的切線與直線2x+2y﹣3=0垂直.
(�。┣髮�(shí)數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x﹣1)的大小;
(2)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知映射f:A→B,其中A=B=R,對應(yīng)法則f:x→y=( )
,若對實(shí)數(shù)m∈B,在集合A中存在元素與之對應(yīng),則m的取值范圍是( )
A.(﹣∞,2]
B.[2,+∞)
C.(2,+∞)
D.(0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在以
為直徑的圓
上,
垂直與圓
所在平面,
為
的垂心.
(1)求證:平面平面
;
(2)若,點(diǎn)
在線段
上,且
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
),數(shù)列
的前
項(xiàng)和為
,點(diǎn)
在
圖象上,且
的最小值為
.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足
,記數(shù)列
的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1 , y1),P2(x2 , y2)間的“L﹣距離”定義為|P1P2|=|x1﹣x2|+|y1﹣y2|.現(xiàn)將邊長為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤ .求:當(dāng)|BC|取最大值時,邊AB所在直線的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)= .
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com