【題目】已知右焦點(diǎn)為F(c,0)的橢圓M: =1(a>b>0)過(guò)點(diǎn) ,且橢圓M關(guān)于直線x=c對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).
(1)求橢圓M的方程;
(2)過(guò)點(diǎn)(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點(diǎn),點(diǎn)Q關(guān)于x軸的對(duì)稱原點(diǎn)為E,證明:直線PE與x軸的交點(diǎn)為F.
【答案】
(1)解:由題意可知:橢圓M: =1(a>b>0)焦點(diǎn)在x軸上,
橢圓過(guò)點(diǎn) ,即 ,
橢圓M關(guān)于直線x=c對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn),
∴a=2c,
由a2=b2+c2,則b2= a2,
解得:a2=4,b2=3,
∴橢圓的標(biāo)準(zhǔn)方程
(2)證明:設(shè)直線PQ的方程為:y=k(x﹣4),k≠0,
∴ ,整理得:(3+4k2)x2﹣32k2x+64k2﹣12=0,
∵過(guò)點(diǎn)P0(4,0)且不垂直于x軸的直線與橢圓交于P,Q兩點(diǎn),
∴由△=(﹣32k2)2﹣4(3+4k2)(64k2﹣12)>0,得:k∈(﹣ , ),
設(shè)P(x1,y1),Q(x2,y2),E(x4,﹣y4),
則x1+x2= ,x1x2= ,
則直線AE的方程為y﹣y1= (x﹣x1),
令y=0得:x=﹣y1 +x1= = = = =1.
∴直線PE過(guò)定點(diǎn)(1,0),
由橢圓的焦點(diǎn)坐標(biāo)為(1,0),則直線PE與x軸的交點(diǎn)為F
【解析】(1)由題意可知:橢圓M: =1(a>b>0)焦點(diǎn)在x軸上,將點(diǎn) 代入橢圓上,即 ,a=2c,則b2= a2,即可求得a和b的值,求得橢圓方程;(2)設(shè)直線PQ的方程為:y=k(x﹣4),k≠0,代入橢圓方程,得(3+4k2)x2﹣32k2x+64k2﹣12=0,由根的判別式得到k∈(﹣ , ),由韋達(dá)定理及直線的方程代入x=﹣y1 +x1=1,由此能證明直線AE過(guò)定點(diǎn)(1,0),由橢圓的焦點(diǎn)坐標(biāo)為(1,0),則直線PE與x軸的交點(diǎn)為F.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了調(diào)查喜歡語(yǔ)文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:
調(diào)查統(tǒng)計(jì) | 不喜歡語(yǔ)文 | 喜歡語(yǔ)文 |
男 | 13 | 10 |
女 | 7 | 20 |
為了判斷喜歡語(yǔ)文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測(cè)值k= ≈4.844,因?yàn)閗≥3.841,根據(jù)下表中的參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
判定喜歡語(yǔ)文學(xué)科與性別有關(guān)系,那么這種判斷出錯(cuò)的可能性為( )
A.95%
B.50%
C.25%
D.5%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象( )
A. 每個(gè)點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),再向左平移個(gè)單位
B. 每個(gè)點(diǎn)的橫坐標(biāo)縮短到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位
C. 先向左平移個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)
D. 先向左平移個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的(縱坐標(biāo)不變)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段的端點(diǎn),端點(diǎn)在圓上運(yùn)動(dòng)
(Ⅰ)求線段的中點(diǎn)的軌跡方程.
(Ⅱ) 設(shè)動(dòng)直線與圓交于兩點(diǎn),問(wèn)在軸正半軸上是否存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為 的正方形,AA1=3,E是AA1的中點(diǎn),過(guò)C1作C1F⊥平面BDE與平面ABB1A1交于點(diǎn)F,則 =
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對(duì)于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文科)設(shè)函數(shù)f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當(dāng)a=1時(shí),求集合A;
(2)若(﹣1,1)A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y=3sin(2x + )
(1)求最小正周期、對(duì)稱軸和對(duì)稱中心;
(2)簡(jiǎn)述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB的兩個(gè)端點(diǎn)A、B分別在x軸和y軸上滑動(dòng),且∣AB∣=2.
(1)求線段AB的中點(diǎn)P的軌跡C的方程;
(2)求過(guò)點(diǎn)M(1,2)且和軌跡C相切的直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com