11.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)與對(duì)稱軸垂直的直線與漸近線交于A,B兩點(diǎn),若△OAB的面積為$\frac{\sqrt{13}bc}{3}$,則雙曲線的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{13}}{3}$

分析 令x=c,則代入y=±$\frac{a}$x可得y=±$\frac{bc}{a}$,根據(jù)△OAB的面積為$\frac{\sqrt{13}bc}{3}$,求出雙曲線的離心率即可.

解答 解:F為右焦點(diǎn),設(shè)其坐標(biāo)為(c,0),
令x=c,則代入y=±$\frac{a}$x可得y=±$\frac{bc}{a}$,
∵△OAB的面積為$\frac{\sqrt{13}bc}{3}$,
∴$\frac{1}{2}×\frac{2bc}{a}×c$=$\frac{\sqrt{13}bc}{3}$,
∴$\frac{c}{a}$=$\frac{\sqrt{13}}{3}$,
∴e=$\frac{\sqrt{13}}{3}$
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的對(duì)稱性、考查雙曲線的離心率和漸近線方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,且橢圓C1的中心和拋物線C2的頂點(diǎn)均為原點(diǎn)O,從橢圓C1上取兩個(gè)點(diǎn).拋物線C2上取一個(gè)點(diǎn).將其坐標(biāo)記錄于表中:
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
(Ⅰ)求橢圓C1和拋物線C2的標(biāo)準(zhǔn)方程:
(Ⅱ)直線l:y=kx+m(k≠0)與橢圓C1交于不同的兩點(diǎn)M、N.
(i)若線段MN的垂直平分線過(guò)點(diǎn)G($\frac{1}{8}$,0),求實(shí)數(shù)k的取值范圍.
(ii)在滿足(i)的條件下,且有m≠=1,求△OMN的面積S△OMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=$\frac{1}{x}$+x2的單調(diào)區(qū)間為單調(diào)減區(qū)間為(-∞,0),(0,$\frac{\root{3}{4}}{2}$),單調(diào)增區(qū)間為[$\frac{\root{3}{4}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知P為銳角三角形ABCD的AB邊上一點(diǎn),A=60°,AC=4,則|$\overrightarrow{PA}$+3$\overrightarrow{PC}$|的最小值為( 。
A.4$\sqrt{3}$B.4$\sqrt{7}$C.6D.6$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知O,N,P在△ABC所在平面內(nèi),且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{NA}$+$\overrightarrow{NB}$+$\overrightarrow{NC}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,則點(diǎn)O,N,P依次是△ABC的( 。
A.重心,外心,垂心B.重心,外心,內(nèi)心C.外心,重心,垂心D.外心,重心,內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1-2x}{x+1}$(x≥1),數(shù)列an=f(n)(n∈N*),證明:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=2|x|+cosx-π,則不等式(x-2)f(x)>0的解集是:(2,+∞)∪(-$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)g(x)=$\frac{a}{x+2}$在[1,2]上為減函數(shù),則a的取值范圍為(  )
A.(-∞,0)B.[0,+∞)C.(0,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)是定義在區(qū)間(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+f(x)<x,則不等式(x+2016)f(x+2016)+2f(-2)>0的解集為(  )
A.(x|-2014<x<0}B.(x|x<-2018}C.(x|x>-2016}D.(x|-2016<x<-2014}

查看答案和解析>>

同步練習(xí)冊(cè)答案