分析 (1)使用二倍角公式及和角公式化簡f(x),利用周期公式得出f(x)的周期;
(2)根據余弦函數的單調性列出不等式解出即可.
解答 解:(Ⅰ)f(x)=3(1+cos2x)-$\sqrt{3}$sin2x=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$cos2x-$\frac{1}{2}$sin2x)+3=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)+3.
∴f(x)的最小正周期為T=$\frac{2π}{2}$=π.
(II)令-π+2kπ≤2x+$\frac{π}{6}$≤2kπ,解得-$\frac{7π}{12}$+kπ≤x≤-$\frac{π}{12}$+kπ,k∈Z.
∴f(x)的單調遞增區(qū)間為[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ],k∈Z.
點評 本題考查了三角函數的恒等變換,三角函數的性質,屬于中檔題
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=sin(x-$\frac{π}{4}$) | B. | f(x)=-sin(x-$\frac{π}{4}$) | C. | f(x)=-cos(x+$\frac{π}{4}$) | D. | f(x)=cos(x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com