2.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( 。
A.B.12πC.D.

分析 三視圖可知該幾何體為一個四棱錐,從一個頂點出發(fā)的三條棱兩兩互相垂直,可將該四棱錐補成正方體,再去求解.

解答 解:由三視圖知該幾何體為有一側(cè)棱垂直底面的四棱錐,將此四棱錐補成正方體,易知正方體的體對角線即為外接球直徑,
所以2r=$\sqrt{3}$,所以r=$\frac{\sqrt{3}}{2}$.
所以該幾何體外接球的表面積為$4π•\frac{3}{4}$=3π
故選A.

點評 本題考查三視圖求幾何體的體積,考查計算能力,空間想象能力,轉(zhuǎn)化能力,將四棱錐補成正方體是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}中,a3=2,a4a6=16,則$\frac{{{a_9}-{a_{11}}}}{{{a_5}-{a_7}}}$=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的算法,則輸出的結(jié)果是( )

A.1 B. C. D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的中心在原點,焦點在x軸上,焦距為2,離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)直線l經(jīng)過點M(0,1),且與橢圓C交于A,B兩點,若$|AB|=\frac{{3\sqrt{5}}}{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z滿足z=$\frac{2i}{1+i}$,那么z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列命題正確的是(  )
A.若α⊥γ,α⊥β,則γ∥βB.若m∥n,m?α,n?β,則α∥β
C.若α⊥β,m⊥β,則m∥αD.若m∥n,m⊥α,n⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用m,n表示兩條不同的直線,α,β表示兩個不同的平面,給出下列命題:
①若m⊥n,m⊥α,則n∥α; 
②若m∥α,α⊥β則m⊥β;
③若m⊥β,α⊥β,則m∥α;
④若m⊥n,m⊥α,n⊥β,則α⊥β,
其中,正確命題是( 。
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對于下列命題:
①若命題p:?x∈R,使得tanx<x,命題q:?x∈R+,lg2x+lgx+1>0則命題“p且?q”是真命題;
②若隨機變量ξ~B(n,p),Eξ=6,Dξ=3,則$P(ξ=1)=\frac{3}{4}$
③“l(fā)gx,lgy,lgz成等差數(shù)列”是“y2=xz”成立的充要條件;
④已知ξ服從正態(tài)分布N(1,22),且P(-1≤ξ<1)=0.3,則P(ξ≥3)=0.2
其中真命題的個數(shù)是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)$f(x)=\frac{{3{x^2}+ax}}{e^x},a∈R$.
(1)若f(x)在x=0處取得極值,求實數(shù)a的值;
(2)若f(x)在[3,+∞)上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案