A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 ①分別判斷命題p,q的真假,結(jié)合復合命題真假關(guān)系進行判斷,
②根據(jù)隨機變量的期望和方差公式進行求解判斷,
③根據(jù)充分條件和必要條件的定義進行判斷,
④根據(jù)正態(tài)分布的性質(zhì)進行求解判斷.
解答 解:①若命題p:?x∈R,使得tanx<x,則當x=$\frac{5π}{4}$時,tan$\frac{5π}{4}$=-1,滿足tanx<x,故p是真命題,
命題q:?x∈R+,lg2x+lgx+1>0為真命題,
∵判別式△═1-4=-3<0,∴l(xiāng)g2x+lgx+1>0恒成立,則命題“p且?q”是假命題,故①錯誤,
②若隨機變量ξ~B(n,p),由Eξ=6,Dξ=3,得np=6,npq=3,
則q=$\frac{1}{2}$,即p=$\frac{1}{2}$,n=12,
則P(ξ=1)=${C}_{6}^{1}$$•\frac{1}{2}$$•(\frac{1}{2})^{5}$=$\frac{3}{32}$,
則$P(ξ=1)=\frac{3}{4}$錯誤,故②錯誤,
③“l(fā)gx,lgy,lgz成等差數(shù)列”則2lgy=lgx+lgz,即lgy2=lgxy,
則y2=xz,且x,y,z>0,此時y2=xz成立,
反之當x=0,y=0,z=0時,滿足y2=xz,但lgx,lgy,lgz無意義,即必要性不成立,
則“l(fā)gx,lgy,lgz成等差數(shù)列”是“y2=xz”成立的充要條件錯誤,故③錯誤,
④已知ξ服從正態(tài)分布N(1,22),且P(-1≤ξ<1)=0.3,則P(1≤ξ<3)=P(-1≤ξ<1)=0.3,
則P(ξ≥3)=0.5-P(1≤ξ<3)=0.5-0.3=0.2,故④正確,
故正確的是④,
故選:A
點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,難度不大.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 650 | B. | 700 | C. | 750 | D. | 800 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | e-1 | B. | e | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com