19.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=$\frac{{2\sqrt{2}}}{3}$|${\overrightarrow b}$|,且($\overrightarrow a$-$\overrightarrow b$)⊥(3$\overrightarrow a$+2$\overrightarrow b$),則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.πB.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

分析 設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,利用兩個(gè)向量的數(shù)量積的定義,數(shù)兩個(gè)向量垂直的性質(zhì),求得cosθ的值,可得θ的值.

解答 解:設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,∵($\overrightarrow a$-$\overrightarrow b$)⊥(3$\overrightarrow a$+2$\overrightarrow b$),|${\overrightarrow a}$|=$\frac{{2\sqrt{2}}}{3}$|${\overrightarrow b}$|,
∴($\overrightarrow a$-$\overrightarrow b$)•(3$\overrightarrow a$+2$\overrightarrow b$)=3${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow$-2${\overrightarrow}^{2}$=3•$\frac{8}{9}$${|\overrightarrow|}^{2}$-$\frac{2\sqrt{2}}{3}|\overrightarrow|$•|$\overrightarrow$|cosθ-2${|\overrightarrow|}^{2}$=0,
∴cosθ=$\frac{\sqrt{2}}{2}$,∴θ=$\frac{π}{4}$,
故選:D.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,數(shù)兩個(gè)向量垂直的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如果執(zhí)行如圖所示的框圖,輸入N=5,則輸出的數(shù)S等于(  )
A.$\frac{5}{4}$B.$\frac{5}{6}$C.$\frac{6}{5}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若(3x+$\frac{1}{x}$)n(n∈N*)的展開(kāi)式中各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則函數(shù)f(x)=(3x+$\frac{1}{x}$)n在(0,+∞)上的最小值為(  )
A.144B.256C.24$\sqrt{3}$D.64$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某中學(xué)高中部有三個(gè)年級(jí),其中高一年級(jí)有學(xué)生400人,采用分層抽樣法抽取一個(gè)容量為45的樣本,高二年級(jí)抽取15人,高三年級(jí)抽取10人,那么高中部的學(xué)生數(shù)為是( 。
A.900B.800C.700D.600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求函數(shù)y=-tan($\frac{π}{2}$x-$\frac{π}{6}$)的定義域、周期和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},x≤4\\{log_4}x,x≥4\end{array}$,則f(f(3))=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.過(guò)拋物線y=2x2的焦點(diǎn)且垂直于它的對(duì)稱軸的直線被它切得的弦長(zhǎng)為( 。
A.2B.1C.0.25D.0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知sin(π-α)=$\frac{1}{3}$,sin2α>0,則tanα=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=x2+3x+3-a•ex(a為非零常數(shù)).
(1)求g(x)=$\frac{f(x)}{{e}^{x}}$的單調(diào)區(qū)間;
(2)若f(x)有且僅有一個(gè)零點(diǎn),求a的取值范圍;
(3)若存在b,c∈R,且b≠c,使f(b)=f(c),試判斷a•f′($\frac{b+c}{2}$)的符號(hào).

查看答案和解析>>

同步練習(xí)冊(cè)答案