16.設(shè)偶函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,△KLM為等腰直角三角形,∠KML=90°,KL=1,則f($\frac{1}{12}$)的值為( 。
A.$\frac{\sqrt{6}-\sqrt{2}}{8}$B.$\frac{\sqrt{2}+\sqrt{6}}{8}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

分析 由條件利用等腰直角三角形求出A,由周期求出ω,由函數(shù)的奇偶性求出φ的值,可得f(x)的解析式,再利用兩角差的余弦公式,求得f($\frac{1}{12}$)的值.

解答 解:由題意可得$\frac{1}{2}$•$\frac{2π}{ω}$=KL=1,∴ω=π,KM=$\frac{\sqrt{2}}{2}$=$\sqrt{{(\frac{1}{2})}^{2}{+A}^{2}}$,∴A=$\frac{1}{2}$,∴f(x)=$\frac{1}{2}$sin(πx+φ).
再結(jié)合f(x)為偶函數(shù),以及所給的圖象,可得φ=$\frac{π}{2}$,∴f(x)=$\frac{1}{2}$cos(πx).
則f($\frac{1}{12}$)=$\frac{1}{2}$cos($\frac{π}{12}$)=$\frac{1}{2}$•cos($\frac{π}{3}$-$\frac{π}{4}$)=$\frac{1}{2}$[cos$\frac{π}{3}$cos$\frac{π}{4}$+sin$\frac{π}{3}$sin$\frac{π}{4}$]=$\frac{1}{2}$•[$\frac{1}{2}•\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}•\frac{\sqrt{2}}{2}$]=$\frac{\sqrt{2}+\sqrt{6}}{8}$,
故選:B.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由條件利用等腰直角三角形求出A,由周期求出ω,由函數(shù)的奇偶性求出φ的值,兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x、y滿足約束條件$\left\{\begin{array}{l}x≤a\\ y≤2\\ x+y≥2\end{array}\right.$,若z=x+2y的最大值是6,則z的最小值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={1,2,3},B={x|x2<9},則A∩B=( 。
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)F(x)=ex-1,G(x)=ax2+bx,其中a,b∈R,e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)若a=0時(shí),y=G(x)為曲線y=F(x)的切線,求b的值;
(Ⅱ)若f(x)=F(x)-G(x),f(1)=0.證明:當(dāng)e-2<a<1時(shí),函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={x∈N|x2-2x-3<0},B={1,x2},若A∪B={0,1,2},則這樣的實(shí)數(shù)x的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.4個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a,an+1=Sn+3n,n∈N*
(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xoOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R),曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)).
(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)過點(diǎn)M平行于直線l的直線與曲線C交于A、B兩點(diǎn),若|MA|•|MB|=3,求點(diǎn)M軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,AC=6,cosB=$\frac{4}{5}$,C=$\frac{π}{4}$.
(1)求AB的長(zhǎng);
(2)求cos(A-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.體積為8的正方體的頂點(diǎn)都在同一球面上,則該球面的表面積為( 。
A.12πB.$\frac{32}{3}$πC.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案